Skip to main content

Evolutionary Analysis and Computing of the Financial Safety Net

  • Conference paper
  • First Online:
Multi-disciplinary Trends in Artificial Intelligence (MIWAI 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10053))

Abstract

Governments want to establish a financial safety net (FSN) to prevent financial crises from spreading. The FSN is a series of institutional arrangements to preserve financial stability. In the real FSN, it includes the central bank, deposit insurance institutions and their premium, commercial banks and their benefit rates, etc., and these parameters are interdependent and dynamic change. And thus, analysis and computing of the FSN is very challenging. Inspired by evolutionary game theory, in this paper, we first establish a network game model of the FSN to analyze the evolution of bank deposit insurance strategies, and further propose a method to measure the effectiveness of the FSN. Finally, we use computational experiments to simulate the operation of the FSN. In the experiments, an evolutionary computation method is employed to compute banks’ decisions to reduce computing time. Experimental results show that our evolutionary approach is suitable for the FSN, and is able to provide suggestions of macro policy for regulators.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schich, S.: Financial crisis: deposit insurance and related financial safety net aspects. OECD J.: Finan. Mark. Trends 2008, 1–39 (2009)

    Google Scholar 

  2. Pan, I., Das, S., Das, S.: Multi-objective active control policy design for commensurate and incommensurate fractional order chaotic financial systems. Appl. Math. Model. 39, 500–514 (2015)

    Article  MathSciNet  Google Scholar 

  3. Gan, L., Wang, G.W.Y.: Partial deposit insurance and moral hazard in banking. Int. J. Commer. Manag. 23, 8–23 (2013)

    Article  Google Scholar 

  4. Fischer, T.: News reaction in financial markets within a behavioral finance model with heterogeneous agents. Algorithmic Finan. 1(2), 123–139 (2011)

    MathSciNet  MATH  Google Scholar 

  5. An, H., Gu, Y., Zhong, H.: The study of effectiveness of U.S. financial regulation based on the financial market efficiency. In: International Conference on Artificial Intelligence, Management Science and Electronic Commerce, pp. 843–846 (2011)

    Google Scholar 

  6. Freixas, X.: Systemic risk and prudential regulation in the global economy. In: Globalization and Systemic Risk, pp. 145–167. World Scientific (2012)

    Google Scholar 

  7. Wang, X., Li, L., Feng, J.: A model build and empirical test on efficiency evaluation about deposit insurance system in China based on variance decomposition. Inf. Technol. J. 12, 2708–2711 (2013)

    Article  Google Scholar 

  8. Jyh-Horng, L., Chieh, W.-H., Wang, C.-C.: Actuarially fair deposit insurance premium during a financial crisis: a barrier-capped barrier option framework. Int. J. Innovative Comput. Inf. Control 10, 2067–2085 (2014)

    Google Scholar 

  9. Blum, A., Morgenstern, J., Sharma, A., Smith, A.: Privacy-preserving public information for sequential games. In: Proceedings of the 2015 Conference on Innovations in Theoretical Computer Science, pp. 173–180. ACM, Rehovot (2015)

    Google Scholar 

  10. Milano, M., O’Sullivan, B., Gavanelli, M.: Sustainable policy making: a strategic challenge for artificial intelligence. Ai Mag. 35, 22–35 (2014)

    Google Scholar 

  11. Aguilar-Rivera, R., Valenzuela-Rendón, M., Rodríguez-Ortiz, J.J.: Genetic algorithms and Darwinian approaches in financial applications: a survey. Expert Syst. Appl. 42, 7684–7697 (2015)

    Article  Google Scholar 

  12. Gupta, P., Mehlawat, M.K., Mittal, G.: Asset portfolio optimization using support vector machines and real-coded genetic algorithm. J. Glob. Optim. 53, 297–315 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lu, J.: Data modeling for searching abnormal noise in stock market based on genetic algorithm. In: International Symposium on Computational Intelligence and Design, pp. 129–131 (2010)

    Google Scholar 

  14. Ganghishetti, P., Vadlamani, R.: Association rule mining via evolutionary multi-objective optimization. In: Murty, M.N., He, X., Chillarige, R.R., Weng, P. (eds.) MIWAI 2014. LNCS (LNAI), vol. 8875, pp. 35–46. Springer, Heidelberg (2014). doi:10.1007/978-3-319-13365-2_4

    Google Scholar 

  15. Ponsich, A., Jaimes, A.L., Coello, C.A.C.: A survey on multiobjective evolutionary algorithms for the solution of the portfolio optimization problem and other finance and economics applications. IEEE Trans. Evol. Comput. 17, 321–344 (2013)

    Article  Google Scholar 

  16. Li, H., Wu, C., Yuan, M.: An evolutionary game model of financial markets with heterogeneous players. Procedia Comput. Sci. 17, 958–964 (2013)

    Article  Google Scholar 

  17. Caporale, G.M., Serguieva, A., Wu, H.: A mixed-game agent-based model for simulating financial contagion. In: IEEE Congress on Evolutionary Computation, CEC 2008, 1–6 June 2008, Hong Kong, China, pp. 3421–3426 (2008)

    Google Scholar 

  18. Monderer, D., Shapley, L.S.: Potential games. Games Econ. Behav. 14, 124–143 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  19. Fischer, S., Vöcking, B.: On the evolution of selfish routing. In: Albers, S., Radzik, T. (eds.) ESA 2004. LNCS, vol. 3221, pp. 323–334. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30140-0_30

    Chapter  Google Scholar 

  20. Roughgarden, T.: Potential functions and the inefficiency of equilibria. In: Proceedings of the International Congress of Mathematicians (ICM), pp. 1071–1094 (2006)

    Google Scholar 

  21. Sastry, P.S., Phansalkar, V.V., Thathachar, M.: Decentralized learning of Nash equilibria in multi-person stochastic games with incomplete information. IEEE Trans. Syst. Man Cybern. 24, 769–777 (1994)

    Article  MathSciNet  Google Scholar 

  22. NetEase Finance. http://money.163.com/special/2014f500bank/

Download references

Acknowledgments

This paper is supported by the National Natural Science Foundation of China (Nos.61562091), Natural Science Foundation of Yunnan Province (Nos. 2014FA023), and the Research Foundation of the Education Department of Yunnan Province (Nos. 2014C134Y, 2016ZZX013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ke Yang .

Editor information

Editors and Affiliations

Appendix

Appendix

We give proofs of theorems in this paper as below.

Theorem 1:

We understand that the bank game is a routing game for funds seeking a better investment path. There are 2 alternative paths, and the funds amounts are H and (W − H), respectively. Therefore, the potential function of the bank game is

$$ \Phi \left( p \right) = \int_{0}^{H} {u(x)dx} + \int_{0}^{W - H} {v(x)dx} = \int_{0}^{H} {u(x)dx} + (W - H) \cdot v $$

Theorem 2:

Since strategies are Nash equilibrium when potential function reaches extreme values, compute its first and second order derivative of Φ.

\( \Phi ^{{\prime }} (H) = u(H) - v = a + b - c - b \cdot \left( {{H \mathord{\left/ {\vphantom {H W}} \right. \kern-0pt} W}} \right)^{e} \), \( \Phi ^{{\prime \prime }} (H) = - b \cdot H^{e - 1} \cdot W^{ - e} < 0 \). Thus, Φ reaches the maximum when \( \Phi ^{{\prime }} (H) = 0 \). And due to H = ∑ i  p i  · A i , we get this theorem. ∎

Theorem 3:

Compute the first and second order derivative of social welfare function. \( R\left( H \right) = u\left( H \right) \cdot H + v \cdot \left( {W - H} \right) = - b \cdot H \cdot \left( {{H \mathord{\left/ {\vphantom {H W}} \right. \kern-0pt} W}} \right)^{e} + \left( {a + b - c} \right) \cdot H + c \cdot W \), then \( R^{\prime}\left( H \right) = \left( {a + b - c} \right) - b \cdot \left( {e + 1} \right) \cdot \left( {{H \mathord{\left/ {\vphantom {H W}} \right. \kern-0pt} W}} \right)^{e} \), \( R^{\prime\prime}\left( H \right) = - b \cdot e \cdot \left( {e + 1} \right) \cdot H^{ - 1} \cdot \left( {{H \mathord{\left/ {\vphantom {H W}} \right. \kern-0pt} W}} \right)^{e} < 0 \), R(H) reaches the maximum when \( R^{\prime}\left( H \right) = 0 \). Then, \( R^{OPT} = \left( {\left( {{{\left( {a + b - c} \right)^{2} \cdot m} \mathord{\left/ {\vphantom {{\left( {a + b - c} \right)^{2} \cdot m} {2b \cdot \left( {m + 1} \right)}}} \right. \kern-0pt} {2b \cdot \left( {m + 1} \right)}}} \right) + c} \right) \cdot W \). In addition, \( R\left( {p^{*} } \right) = c \cdot W \) from Theorem 2, together with the Eq. (12), we finally get the formula of this theorem. ∎

Theorem 4:

Let Lyapunov function be \( L\left( p \right) =\Phi ^{ * } -\Phi \left( p \right) \), where Φ(p) is given by Eq. (9), Φ* is the maximum of Φ(p). Thus, L(p) is positive definite.

$$ \begin{aligned} \dot{L}\left( p \right) & = - \dot{\Phi }\left( p \right) = - \left( {u\left( p \right) - v} \right) \cdot \dot{H} = - \left( {u\left( p \right) - v} \right) \cdot \sum\limits_{i} {A_{i} \cdot \dot{p}_{i} } \left( t \right) \\ & = - \left( {u\left( p \right) - v} \right) \cdot \sum\limits_{i} {A_{i} \cdot \lambda \left( t \right) \cdot p_{i} \left( t \right) \cdot \left( {1 - p_{i} (t)} \right) \cdot \left( {u(p) - v} \right)} \\ & = - \left( {u\left( p \right) - v} \right)^{2} \cdot \sum\limits_{i} {A_{i} \cdot \lambda \left( t \right) \cdot p_{i} \left( t \right) \cdot \left( {1 - p_{i} (t)} \right)} \le 0 \\ \end{aligned} $$

According to Lyapunov stability theorem, the solution ξ(p 0, t) of Eq. (15) is asymptotic stable. Iff u(p) = v, \( \dot{L}\left( p \right) = 0 \) holds. Therefore, ξ(p 0, t) converges to the Nash equilibrium as t → ∞. ∎

Theorem 5:

Let \( \Psi \left( {p\left( t \right)} \right) =\Phi \left( {p\left( t \right)} \right) + R_{\hbox{min} } \), and its first order derivative with respect time t of \( \Psi \) is \( \dot{\Psi }\left( {p\left( t \right)} \right) = \dot{\Phi }\left( {p\left( t \right)} \right) \ge 0 \). Iff \( u\left( p \right) = v \), it holds \( \dot{\Psi } = 0 \), and \( r_{i} = \bar{r} \) for each i.

According to Definition 2, if p(t) is not ε − δ equilibrium, then, it at least has ε · W part of funds amount, and its benefits rate is \( \left( {1 - \delta } \right) \cdot \bar{r} \) at most. We use Jensen inequality in the following case. Suppose: the benefits rate of ε · W part is equal to \( \left( {1 - \delta } \right) \cdot \bar{r} \), the rate of the rest (1 − ε) · W part is equal to \( \hat{r} \). Therefore, \( \bar{r} \) is given as below.

$$ \bar{r} = \varepsilon \cdot (1 - \delta )\bar{r} + (1 - \varepsilon ) \cdot \hat{r} $$
(16)

Jensen inequality is employed again, we have:

$$ \dot{\Psi }\left( {p\left( t \right)} \right) \ge \lambda \left( {\varepsilon W \cdot \left( {(1 - \delta )\bar{r}} \right)^{2} + (1 - \varepsilon )W \cdot \hat{r}^{2} - W \cdot \bar{r}^{2} } \right) $$
(17)

We get \( \hat{r} = \bar{r} \cdot {{\left( {1 - \varepsilon + \varepsilon \delta } \right)} \mathord{\left/ {\vphantom {{\left( {1 - \varepsilon + \varepsilon \delta } \right)} {1 - \varepsilon }}} \right. \kern-0pt} {1 - \varepsilon }} \) from Eq. (16), and substitute it into Eq. (17), then

$$ \dot{\Psi }\left( {p\left( t \right)} \right) \ge {{\lambda \varepsilon W\delta^{2} \bar{r}^{2} } \mathord{\left/ {\vphantom {{\lambda \varepsilon W\delta^{2} \bar{r}^{2} } {\left( {1 - \varepsilon } \right)}}} \right. \kern-0pt} {\left( {1 - \varepsilon } \right)}} = {{\varepsilon W\delta^{2} \bar{r}} \mathord{\left/ {\vphantom {{\varepsilon W\delta^{2} \bar{r}} {\left( {1 - \varepsilon } \right)}}} \right. \kern-0pt} {\left( {1 - \varepsilon } \right)}} \ge \varepsilon W\delta^{2} \bar{r} = \varepsilon \delta^{2} R $$

Next, \( \Psi =\Phi + R_{\hbox{min} } \le {{\left( {2e + 3} \right)R} \mathord{\left/ {\vphantom {{\left( {2e + 3} \right)R} {\left( {e + 1} \right)}}} \right. \kern-0pt} {\left( {e + 1} \right)}} \), Substitute it into above inequality, we have

$$ \dot{\Psi }\left( {p\left( t \right)} \right) \ge {{\varepsilon \delta^{2} \cdot\Psi \left( {p\left( t \right)} \right) \cdot \left( {e + 1} \right)} \mathord{\left/ {\vphantom {{\varepsilon \delta^{2} \cdot\Psi \left( {p\left( t \right)} \right) \cdot \left( {e + 1} \right)} {\left( {2e + 3} \right)}}} \right. \kern-0pt} {\left( {2e + 3} \right)}} $$

Thus, if p(t) is not ε − δ equilibrium in period (t + Δt), it holds that

$$ \Psi \left( {p\left( {t +\Delta t} \right)} \right) \ge\Psi \left( {p\left( t \right)} \right) \cdot \exp \left( {{{\varepsilon \delta^{2} \cdot \left( {e + 1} \right)} \mathord{\left/ {\vphantom {{\varepsilon \delta^{2} \cdot \left( {e + 1} \right)} {\left( {2e + 3} \right)}}} \right. \kern-0pt} {\left( {2e + 3} \right)}} \cdot\Delta t} \right) $$

These periods include (t 0 + Δt 0), (t 1 + Δt 1), …, (t m  + Δt m ), …

Let T = ∑ m Δt m , When m goes to infinity, T includes the total periods when p does not reach equilibrium, we have

$$ \begin{aligned} & \quad exp\left( {\frac{e + 1}{2e + 3}\varepsilon \delta^{2} \cdot T} \right) \le \frac{{\Psi \left( {p(t_{i} + \Delta t_{i} )} \right)}}{{\Psi \left( {p(t_{0} )} \right)}} \le \frac{{\Psi _{\hbox{max} } }}{{\Psi _{\hbox{min} } }} \le \frac{{\Phi _{\hbox{max} } + R_{\hbox{max} } }}{{R_{\hbox{min} } }} \le \frac{2e + 3}{e + 1} \cdot \frac{{R_{\hbox{max} } }}{{R_{\hbox{min} } }} \\ & T \le {{\left( {e + 1} \right)\ln \left( {{{\left( {2e + 3} \right)R_{\hbox{max} } } \mathord{\left/ {\vphantom {{\left( {2e + 3} \right)R_{\hbox{max} } } {\left( {e + 1} \right)R_{\hbox{min} } }}} \right. \kern-0pt} {\left( {e + 1} \right)R_{\hbox{min} } }}} \right)} \mathord{\left/ {\vphantom {{\left( {e + 1} \right)\ln \left( {{{\left( {2e + 3} \right)R_{\hbox{max} } } \mathord{\left/ {\vphantom {{\left( {2e + 3} \right)R_{\hbox{max} } } {\left( {e + 1} \right)R_{\hbox{min} } }}} \right. \kern-0pt} {\left( {e + 1} \right)R_{\hbox{min} } }}} \right)} {\left( {2e + 3} \right)}}} \right. \kern-0pt} {\left( {2e + 3} \right)}}\varepsilon \delta^{2} \sim {\mathcal{O}}\left( {{{\ln \left( {{{R_{\hbox{max} } } \mathord{\left/ {\vphantom {{R_{\hbox{max} } } {R_{\hbox{min} } }}} \right. \kern-0pt} {R_{\hbox{min} } }}} \right)} \mathord{\left/ {\vphantom {{\ln \left( {{{R_{\hbox{max} } } \mathord{\left/ {\vphantom {{R_{\hbox{max} } } {R_{\hbox{min} } }}} \right. \kern-0pt} {R_{\hbox{min} } }}} \right)} {\varepsilon \delta^{2} }}} \right. \kern-0pt} {\varepsilon \delta^{2} }}} \right) \\ \end{aligned} $$

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Yang, K., Yue, K., Wu, H., Li, J., Liu, W. (2016). Evolutionary Analysis and Computing of the Financial Safety Net. In: Sombattheera, C., Stolzenburg, F., Lin, F., Nayak, A. (eds) Multi-disciplinary Trends in Artificial Intelligence. MIWAI 2016. Lecture Notes in Computer Science(), vol 10053. Springer, Cham. https://doi.org/10.1007/978-3-319-49397-8_22

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49397-8_22

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49396-1

  • Online ISBN: 978-3-319-49397-8

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics