Skip to main content

How to Generate Randomized Roundings with Dependencies and How to Derandomize Them

  • Chapter
  • First Online:
Algorithm Engineering

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 9220))

Abstract

We give a brief survey on how to generate randomized roundings that satisfy certain constraints with probability one and how to compute roundings of comparable quality deterministically (derandomized randomized roundings). The focus of this treatment of this broad topic is on how to actually compute these randomized and derandomized roundings and how the different algorithms with similar proven performance guarantees compare in experiments and the applications of computing low-discrepancy point sets, low-congestion routing, the max-coverage problem in hypergraphs, and broadcast scheduling. While mostly surveying results of the last 5 years, we also give a simple, unified proof for the correctness of the different dependent randomized rounding approaches.

Work done while both authors were affiliated with the Max Planck Institute for Informatics, Saarbrücken, Germany. Supported by the German Science Foundation (DFG) through grants DO 749/4-1, DO 749/4-2, and DO 749/4-3 in the priority programme SPP 1307 “Algorithm Engineering”.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Note that some earlier solutions for special cases exist, e.g., for sums of variables adding up to one [47] or the hypergraph discrepancy problem [14, 15], which is the rounding problem with all variables being 1 / 2 and the rounding errors defined by a binary matrix.

  2. 2.

    Note that, in fact, \(E[y]=x\) and \(y \in \{\lfloor x \rfloor , \lceil x \rceil \}\) is equivalent to saying that y is a randomized rounding of x.

References

  1. Ageev, A.A., Sviridenko, M.: Pipage rounding: a new method of constructing algorithms with proven performance guarantee. J. Comb. Optim. 8(3), 307–328 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  2. Al-Karaki, J.N., Kamal, A.E.: Routing techniques in wireless sensor networks: a survey. Wirel. Commun. IEEE 11(6), 6–28 (2004)

    Article  Google Scholar 

  3. Arora, S., Rao, S., Vazirani, U.V.: Expander flows, geometric embeddings and graph partitioning. J. ACM 56(2) (2009)

    Google Scholar 

  4. Asadpour, A., Goemans, M.X., Madry, A., Gharan, S.O., Saberi, A.: An O(log n/ log log n)-approximation algorithm for the asymmetric traveling salesman problem. In: SODA, pp. 379–389 (2010)

    Google Scholar 

  5. Bansal, N.: Constructive algorithms for discrepancy minimization. In: FOCS, pp. 3–10 (2010)

    Google Scholar 

  6. Bansal, N., Spencer, J.: Deterministic discrepancy minimization. Algorithmica 67(4), 451–471 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  7. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Chekuri, C., Vondrák, J., Zenklusen, R.: Dependent randomized rounding for matroid polytopes and applications (2009). http://arxiv.org/pdf/0909.4348v2.pdf

  9. Chekuri, C., Vondrák, J., Zenklusen, R.: Dependent randomized rounding via exchange properties of combinatorial structures. In: FOCS, pp. 575–584 (2010)

    Google Scholar 

  10. Chekuri, C., Vondrák, J., Zenklusen, R.: Multi-budgeted matchings and matroid intersection via dependent rounding. In: SODA, pp. 1080–1097 (2011)

    Google Scholar 

  11. Cunningham, W.H.: Testing membership in matroid polyhedra. J. Comb. Theory Ser. B 36(2), 161–188 (1984)

    Article  MathSciNet  MATH  Google Scholar 

  12. Demers, A.J., Greene, D.H., Hauser, C., Irish, W., Larson, J., Shenker, S., Sturgis, H.E., Swinehart, D.C., Terry, D.B.: Epidemic algorithms for replicated database maintenance. Oper. Syst. Rev. 22, 8–32 (1988)

    Article  Google Scholar 

  13. Dobkin, D.P., Eppstein, D., Mitchell, D.P.: Computing the discrepancy with applications to supersampling patterns. ACM Trans. Graph. 15(4), 354–376 (1996)

    Article  Google Scholar 

  14. Doerr, B.: Multi-color discrepancies. dissertation, Christian-Albrechts-Universität zu Kiel (2000)

    Google Scholar 

  15. Doerr, B.: Structured randomized rounding and coloring. In: Freivalds, R. (ed.) FCT 2001. LNCS, vol. 2138, pp. 461–471. Springer, Heidelberg (2001). doi:10.1007/3-540-44669-9_53

    Chapter  Google Scholar 

  16. Doerr, B.: Generating randomized roundings with cardinality constraints and derandomizations. In: Durand, B., Thomas, W. (eds.) STACS 2006. LNCS, vol. 3884, pp. 571–583. Springer, Heidelberg (2006). doi:10.1007/11672142_47

    Chapter  Google Scholar 

  17. Doerr, B.: Randomly rounding rationals with cardinality constraints and derandomizations. In: Thomas, W., Weil, P. (eds.) STACS 2007. LNCS, vol. 4393, pp. 441–452. Springer, Heidelberg (2007). doi:10.1007/978-3-540-70918-3_38

    Chapter  Google Scholar 

  18. Doerr, B., Fouz, M., Friedrich, T.: Social networks spread rumors in sublogarithmic time. In: STOC, pp. 21–30. ACM (2011)

    Google Scholar 

  19. Doerr, B., Fouz, M., Friedrich, T.: Experimental analysis of rumor spreading in social networks. In: MedAlg, pp. 159–173 (2012)

    Google Scholar 

  20. Doerr, B., Fouz, M., Friedrich, T.: Why rumors spread so quickly in social networks. Communun. ACM 55, 70–75 (2012)

    Article  Google Scholar 

  21. Doerr, B., Friedrich, T., Künnemann, M., Sauerwald, T.: Quasirandom rumor spreading: an experimental analysis. JEA 16. Article 3.3 (2011)

    Google Scholar 

  22. Doerr, B., Gnewuch, M.: Construction of low-discrepancy point sets of small size by bracketing covers and dependent randomized rounding. In: Keller, A., Heinrich, S., Niederreiter, H. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2006, pp. 299–312. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  23. Doerr, B.: Non-independent randomized rounding. In: SODA, pp. 506–507 (2003)

    Google Scholar 

  24. Doerr, B., Friedrich, T., Sauerwald, T.: Quasirandom rumor spreading. In: SODA, pp. 773–781 (2008)

    Google Scholar 

  25. Doerr, B., Friedrich, T., Sauerwald, T.: Quasirandom rumor spreading: expanders, push vs. pull, and robustness. In: ICALP, pp. 366–377 (2009)

    Google Scholar 

  26. Doerr, B., Gnewuch, M., Kritzer, P., Pillichshammer, F.: Component-by-component construction of low-discrepancy point sets of small size. Monte Carlo Meth. Appl. 14(2), 129–149 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  27. Doerr, B., Gnewuch, M., Wahlström, M.: Implementation of a component-by-component algorithm to generate small low-discrepancy samples. In: L’Ecuyer, P., Owen, A.B. (eds.) Monte Carlo and Quasi-Monte Carlo Methods 2008, pp. 323–338. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  28. Doerr, B., Gnewuch, M., Wahlström, M.: Algorithmic construction of low-discrepancy point sets via dependent randomized rounding. J. Complex. 26(5), 490–507 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  29. Doerr, B., Künnemann, M., Wahlström, M.: Randomized rounding for routing and covering problems: experiments and improvements. In: Festa, P. (ed.) SEA 2010. LNCS, vol. 6049, pp. 190–201. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13193-6_17

    Chapter  Google Scholar 

  30. Doerr, B., Künnemann, M., Wahlström, M.: Dependent randomized rounding: the bipartite case. In: ALENEX, pp. 96–106 (2011)

    Google Scholar 

  31. Doerr, B., Wahlström, M.: Randomized rounding in the presence of a cardinality constraint. In: ALENEX, pp. 162–174 (2009)

    Google Scholar 

  32. Erdős, P., Selfridge, J.L.: On a combinatorial game. J. Combinatorial Theory Ser. A 14, 298–301 (1973)

    Article  MathSciNet  MATH  Google Scholar 

  33. Fleischer, L., Jain, K., Williamson, D.P.: Iterative rounding 2-approximation algorithms for minimum-cost vertex connectivity problems. J. Comput. Syst. Sci. 72(5), 838–867 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  34. Gabow, H.N., Manu, K.S.: Packing algorithms for arborescences (and spanning trees) in capacitated graphs. Math. Program. 82, 83–109 (1998)

    MathSciNet  MATH  Google Scholar 

  35. Gandhi, R., Khuller, S., Parthasarathy, S., Srinivasan, A.: Dependent rounding in bipartite graphs. In: FOCS, pp. 323–332 (2002)

    Google Scholar 

  36. Gandhi, R., Khuller, S., Parthasarathy, S., Srinivasan, A.: Dependent rounding and its applications to approximation algorithms. J. ACM 53, 324–360 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  37. Giannopoulos, P., Knauer, C., Wahlström, M., Werner, D.: Hardness of discrepancy computation and epsilon-net verification in high dimension. J. Complexity 28(2), 162–176 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  38. Gnewuch, M., Wahlström, M., Winzen, C.: A new randomized algorithm to approximate the star discrepancy based on threshold accepting. SIAM J. Numerical Anal. 50(2), 781–807 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  39. Goemans, M.X., Williamson, D.P.: Improved approximation algorithms for maximum cut and satisfiability problems using semidefinite programming. J. ACM 42(6), 1115–1145 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  40. Hromkovič, J.: Design and Analysis of Randomized Algorithms. Introduction to Design Paradigms. Texts in Theoretical Computer Science An EATCS Series. Springer, Berlin (2005)

    Book  MATH  Google Scholar 

  41. Jain, K.: A factor 2 approximation algorithm for the generalized Steiner network problem. Combinatorica 21(1), 39–60 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  42. Moser, R.A., Tardos, G.: A constructive proof of the general Lovász local lemma. J. ACM 57(2) (2010)

    Google Scholar 

  43. Niederreiter, H.: Random number generation and Quasi-Monte Carlo methods. In: CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 63. Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA (1992)

    Google Scholar 

  44. Orlin, J.B.: Max flows in O(nm) time, or better. In: STOC, pp. 765–774 (2013)

    Google Scholar 

  45. Oxley, J.: Matroid Theory. Oxford Graduate Texts in Mathematics. OUP Oxford, Oxford (2011)

    Google Scholar 

  46. Panconesi, A., Srinivasan, A.: Randomized distributed edge coloring via an extension of the Chernoff-Hoeffding bounds. SIAM J. Comput. 26, 350–368 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  47. Raghavan, P.: Probabilistic construction of deterministic algorithms: approximating packing integer programs. J. Comput. Syst. Sci. 37, 130–143 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  48. Raghavan, P., Thompson, C.D.: Randomized rounding: a technique for provably good algorithms and algorithmic proofs. Combinatorica 7, 365–374 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  49. Raghavendra, P.: Optimal algorithms and inapproximability results for every CSP? In: STOC, pp. 245–254 (2008)

    Google Scholar 

  50. Raghavendra, P., Steurer, D.: How to round any CSP. In: FOCS, pp. 586–594 (2009)

    Google Scholar 

  51. Rothvoß, T.: The entropy rounding method in approximation algorithms. In: SODA, pp. 356–372 (2012)

    Google Scholar 

  52. Saha, B., Srinivasan, A.: A new approximation technique for resource-allocation problems. In: ICS, pp. 342–357 (2010)

    Google Scholar 

  53. Schrijver, A.: Combinatorial Optimization: Polyhedra and Efficiency. Algorithms and Combinatorics, vol. 24. Springer, Heidelberg (2003)

    MATH  Google Scholar 

  54. Spencer, J.: Six standard deviations suffice. Trans. Amer. Math. Soc. 289, 679–706 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  55. Spencer, J.: Ten Lectures on the Probabilistic Method. SIAM, Philadelphia (1987)

    MATH  Google Scholar 

  56. Srinivasan, A.: Distributions on level-sets with applications to approximations algorithms. In: FOCS, pp. 588–597 (2001)

    Google Scholar 

  57. Srivastav, A., Stangier, P.: Algorithmic Chernoff-Hoeffding inequalities in integer programming. Random Struct. Algorithms 8, 27–58 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  58. Szegedy, M.: The Lovász local lemma - a survey. In: CSR, pp. 1–11 (2013)

    Google Scholar 

Download references

Acknowledgements

The authors are grateful to the German Science Foundation for generously supporting this research through their priority programme Algorithm Engineering, both financially and by providing scientific infrastructure. We are thankful to our colleagues in the priority programme for many stimulation discussions. A particular thank goes to our collaborators and associated members of the project, namely Carola Doerr née Winzen (University of Kiel, then MPI Saarbrücken, now Université Pierre et Marie Curie—Paris 6), Tobias Friedrich (MPI Saarbrücken, now University of Jena), Michael Gnewuch (University of Kiel, now University of Kaiserslautern), Peter Kritzer (University of Linz), Marvin Künnemann (MPI Saarbrücken), Friedrich Pillichshammer (University of Linz), and Thomas Sauerwald (MPI Saarbrücken, now University of Cambridge).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Magnus Wahlström .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this chapter

Cite this chapter

Doerr, B., Wahlström, M. (2016). How to Generate Randomized Roundings with Dependencies and How to Derandomize Them. In: Kliemann, L., Sanders, P. (eds) Algorithm Engineering. Lecture Notes in Computer Science(), vol 9220. Springer, Cham. https://doi.org/10.1007/978-3-319-49487-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49487-6_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49486-9

  • Online ISBN: 978-3-319-49487-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics