Skip to main content

Enabling Android-Based Devices to High-End GPGPUs

  • Conference paper
  • First Online:
Algorithms and Architectures for Parallel Processing (ICA3PP 2016)

Abstract

The success of Android is based on its unified Java programming model that allows to write platform-independent programs for a variety of different target platforms. In this paper we describe the first, to the best of our knowledge, offloading platform that enables Android devices with no GPU support to run Nvidia CUDA kernels by migrating their execution on high-end GPGPU servers. The framework is highly modular and exposes a rich Application Programming Interface (API) to the developers, making it highly transparent and hiding the complexity of the network layer. We present the first preliminary results, showing that not only GPGPU offloading is possible but it is also promising in terms of performance.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.dell.com/en-uk/work/learn/mobility-byod.

  2. 2.

    http://docs.nvidia.com/cuda/cuda-runtime-api/.

  3. 3.

    https://devblogs.nvidia.com/parallelforall/easy-introduction-cuda-c-and-c/.

  4. 4.

    http://docs.nvidia.com/cuda/cuda-samples/.

References

  1. Armand, F., Gien, M., Maigné, G., Mardinian, G.: Shared device driver model for virtualized mobile handsets. In: Proceedings of the First Workshop on Virtualization in Mobile Computing, pp. 12–16. ACM (2008)

    Google Scholar 

  2. Choi, K., Lee, J., Kim, Y., Kang, S., Han, H.: Feasibility of the computation task offloading to GPGPU-enabled devices in mobile cloud. In: 2015 International Conference on Cloud and Autonomic Computing (ICCAC), pp. 244–251, September 2015

    Google Scholar 

  3. Chun, B.G., Ihm, S., Maniatis, P., Naik, M., Patti, A.: CloneCloud: elastic execution between mobile device and cloud. In: Proceedings of the Sixth Conference on Computer Systems, pp. 301–314. ACM (2011)

    Google Scholar 

  4. Gordon, M.S., Jamshidi, D.A., Mahlke, S., Mao, Z.M., Chen, X.: Comet: code offload by migrating execution transparently. In: Presented as Part of the 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI 12), pp. 93–106. USENIX, Hollywood, CA (2012). https://www.usenix.org/conference/osdi12/technical-sessions/presentation/gordon

  5. Kantarci, B., Mouftah, H.T.: Trustworthy sensing for public safety in cloud-centric internet of things. IEEE Internet Things J. 1(4), 360–368 (2014)

    Article  Google Scholar 

  6. Kosta, S., Aucinas, A., Hui, P., Mortier, R., Zhang, X.: Thinkair: dynamic resource allocation and parallel execution in the cloud for mobile code offloading. In: Proceedings of IEEE INFOCOM 2012, pp. 945–953, March 2012

    Google Scholar 

  7. Montella, R., Giunta, G., Laccetti, G., Lapegna, M., Palmieri, C., Ferraro, C., Pelliccia, V.: Virtualizing CUDA enabled GPGPUs on ARM clusters. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K., Kitowski, J., Wiatr, K. (eds.) PPAM 2015. LNCS, vol. 9574, pp. 3–14. Springer, Heidelberg (2016). doi:10.1007/978-3-319-32152-3_1

    Chapter  Google Scholar 

  8. Silva, F.A., Rodrigues, M., Maciel, P., Kosta, S., Mei, A.: Planning mobile cloud infrastructures using stochastic petri nets and graphic processing units. In: 2015 IEEE 7th International Conference on Cloud Computing Technology and Science (CloudCom), pp. 471–474, November 2015

    Google Scholar 

  9. Volkov, V., Demmel, J.W.: Benchmarking GPUs to tune dense linear algebra. In: International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2008, pp. 1–11. IEEE (2008)

    Google Scholar 

  10. Yan, Y., Grossman, M., Sarkar, V.: JCUDA: a programmer-friendly interface for accelerating Java programs with CUDA. In: Sips, H., Epema, D., Lin, H.-X. (eds.) Euro-Par 2009. LNCS, vol. 5704, pp. 887–899. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03869-3_82

    Chapter  Google Scholar 

Download references

Acknowledgments

This research has been supported by the Grant Agreement number: 644312 - RAPID - H2020-ICT-2014/H2020-ICT-2014-1 “Heterogeneous Secure Multi-level Remote Acceleration Service for Low-Power Integrated Systems and Devices”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giulio Giunta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Montella, R., Ferraro, C., Kosta, S., Pelliccia, V., Giunta, G. (2016). Enabling Android-Based Devices to High-End GPGPUs. In: Carretero, J., Garcia-Blas, J., Ko, R., Mueller, P., Nakano, K. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2016. Lecture Notes in Computer Science(), vol 10048. Springer, Cham. https://doi.org/10.1007/978-3-319-49583-5_9

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49583-5_9

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49582-8

  • Online ISBN: 978-3-319-49583-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics