Abstract
The success of Android is based on its unified Java programming model that allows to write platform-independent programs for a variety of different target platforms. In this paper we describe the first, to the best of our knowledge, offloading platform that enables Android devices with no GPU support to run Nvidia CUDA kernels by migrating their execution on high-end GPGPU servers. The framework is highly modular and exposes a rich Application Programming Interface (API) to the developers, making it highly transparent and hiding the complexity of the network layer. We present the first preliminary results, showing that not only GPGPU offloading is possible but it is also promising in terms of performance.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Armand, F., Gien, M., Maigné, G., Mardinian, G.: Shared device driver model for virtualized mobile handsets. In: Proceedings of the First Workshop on Virtualization in Mobile Computing, pp. 12–16. ACM (2008)
Choi, K., Lee, J., Kim, Y., Kang, S., Han, H.: Feasibility of the computation task offloading to GPGPU-enabled devices in mobile cloud. In: 2015 International Conference on Cloud and Autonomic Computing (ICCAC), pp. 244–251, September 2015
Chun, B.G., Ihm, S., Maniatis, P., Naik, M., Patti, A.: CloneCloud: elastic execution between mobile device and cloud. In: Proceedings of the Sixth Conference on Computer Systems, pp. 301–314. ACM (2011)
Gordon, M.S., Jamshidi, D.A., Mahlke, S., Mao, Z.M., Chen, X.: Comet: code offload by migrating execution transparently. In: Presented as Part of the 10th USENIX Symposium on Operating Systems Design and Implementation (OSDI 12), pp. 93–106. USENIX, Hollywood, CA (2012). https://www.usenix.org/conference/osdi12/technical-sessions/presentation/gordon
Kantarci, B., Mouftah, H.T.: Trustworthy sensing for public safety in cloud-centric internet of things. IEEE Internet Things J. 1(4), 360–368 (2014)
Kosta, S., Aucinas, A., Hui, P., Mortier, R., Zhang, X.: Thinkair: dynamic resource allocation and parallel execution in the cloud for mobile code offloading. In: Proceedings of IEEE INFOCOM 2012, pp. 945–953, March 2012
Montella, R., Giunta, G., Laccetti, G., Lapegna, M., Palmieri, C., Ferraro, C., Pelliccia, V.: Virtualizing CUDA enabled GPGPUs on ARM clusters. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K., Kitowski, J., Wiatr, K. (eds.) PPAM 2015. LNCS, vol. 9574, pp. 3–14. Springer, Heidelberg (2016). doi:10.1007/978-3-319-32152-3_1
Silva, F.A., Rodrigues, M., Maciel, P., Kosta, S., Mei, A.: Planning mobile cloud infrastructures using stochastic petri nets and graphic processing units. In: 2015 IEEE 7th International Conference on Cloud Computing Technology and Science (CloudCom), pp. 471–474, November 2015
Volkov, V., Demmel, J.W.: Benchmarking GPUs to tune dense linear algebra. In: International Conference for High Performance Computing, Networking, Storage and Analysis, SC 2008, pp. 1–11. IEEE (2008)
Yan, Y., Grossman, M., Sarkar, V.: JCUDA: a programmer-friendly interface for accelerating Java programs with CUDA. In: Sips, H., Epema, D., Lin, H.-X. (eds.) Euro-Par 2009. LNCS, vol. 5704, pp. 887–899. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03869-3_82
Acknowledgments
This research has been supported by the Grant Agreement number: 644312 - RAPID - H2020-ICT-2014/H2020-ICT-2014-1 “Heterogeneous Secure Multi-level Remote Acceleration Service for Low-Power Integrated Systems and Devices”.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Montella, R., Ferraro, C., Kosta, S., Pelliccia, V., Giunta, G. (2016). Enabling Android-Based Devices to High-End GPGPUs. In: Carretero, J., Garcia-Blas, J., Ko, R., Mueller, P., Nakano, K. (eds) Algorithms and Architectures for Parallel Processing. ICA3PP 2016. Lecture Notes in Computer Science(), vol 10048. Springer, Cham. https://doi.org/10.1007/978-3-319-49583-5_9
Download citation
DOI: https://doi.org/10.1007/978-3-319-49583-5_9
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-49582-8
Online ISBN: 978-3-319-49583-5
eBook Packages: Computer ScienceComputer Science (R0)