Lecture Notes in Computer Science

Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison

Lancaster University, Lancaster, UK
Takeo Kanade

Carnegie Mellon University, Pittsburgh, PA, USA
Josef Kittler

University of Surrey, Guildford, UK
Jon M. Kleinberg

Cornell University, Ithaca, NY, USA
Friedemann Mattern

ETH Zurich, Zurich, Switzerland
John C. Mitchell

Stanford University, Stanford, CA, USA
Moni Naor

Weizmann Institute of Science, Rehovot, Israel
C. Pandu Rangan

Indian Institute of Technology, Madras, India
Bernhard Steffen

TU Dortmund University, Dortmund, Germany
Demetri Terzopoulos

University of California, Los Angeles, CA, USA
Doug Tygar

University of California, Berkeley, CA, USA
Gerhard Weikum

Max Planck Institute for Informatics, Saarbriicken, Germany

10001

More information about this series at http://www.springer.com/series/7408

http://www.springer.com/series/7408

Wolfgang Ahrendt - Bernhard Beckert
Richard Bubel - Reiner Hihnle
Peter H. Schmitt - Mattias Ulbrich (Eds.)

Deductive

Software Verification —
The KeY Book

From Theory to Practice

@ Springer

Editors

Wolfgang Ahrendt

Chalmers University of Technology
Gothenburg

Sweden

Bernhard Beckert

Karlsruher Institut fiir Technologie (KIT)
Karlsruhe

Germany

Richard Bubel

Technische Universitdt Darmstadt
Darmstadt

Germany

Reiner Hahnle

Technische Universitdt Darmstadt
Darmstadt

Germany

Peter H. Schmitt

Karlsruher Institut fiir Technologie (KIT)
Karlsruhe

Germany

Mattias Ulbrich

Karlsruher Institut fiir Technologie (KIT)
Karlsruhe

Germany

ISSN 0302-9743

Lecture Notes in Computer Science
ISBN 978-3-319-49811-9

DOI 10.1007/978-3-319-49812-6

ISSN 1611-3349 (electronic)

ISBN 978-3-319-49812-6 (eBook)

Library of Congress Control Number: 2016957483
LNCS Sublibrary: SL2 — Programming and Software Engineering

© Springer International Publishing AG 2016

This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of the
material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology now
known or hereafter developed.

The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.

The publisher, the authors and the editors are safe to assume that the advice and information in this book are
believed to be true and accurate at the date of publication. Neither the publisher nor the authors or the editors
give a warranty, express or implied, with respect to the material contained herein or for any errors or
omissions that may have been made.

Printed on acid-free paper
This Springer imprint is published by Springer Nature

The registered company is Springer International Publishing AG
The registered company address is: Gewerbestrasse 11, 6330 Cham, Switzerland

Authors’ Affiliations

Wolfgang Ahrendt (Chalmers University of Technology, Gothenburg, Sweden,
email: ahrendt@chalmers.se)

Bernhard Beckert (Karlsruher Institut fiir Technologie (KIT), Germany,
email: beckert@kit.edu)

Richard Bubel (Technische Universitidt Darmstadt, Germany,
email: bubel @cs.tu-darmstadt.de)

Frank S. de Boer (Centrum voor Wiskunde en Informatica, Amsterdam,
The Netherlands, email: f.s.de.boer@cwi.nl)

Stijn de Gouw (Open University, Heerlen, The Netherlands,
email: stijn.degouw @ou.nl)

Christoph Gladisch (Karlsruher Institut fiir Technologie (KIT), Germany,
email: gladisch@ira.uka.de)

Daniel Grahl (Karlsruher Institut fiir Technologie (KIT), Germany,
email: daniel.grahl @alumni.kit.edu)

Sarah Grebing (Karlsruher Institut fiir Technologie (KIT), Germany,
email: grebing@ira.uka.de)

Simon Greiner (Karlsruher Institut fiir Technologie (KIT), Germany,
email: simon.greiner @kit.edu)

Reiner Hihnle (Technische Universitidt Darmstadt, Germany,
email: haehnle @cs.tu-darmstadt.de)

Martin Hentschel (Technische Universitdt Darmstadt, Germany,
email: hentschel @cs.tu-darmstadt.de)

Mihai Herda (Karlsruher Institut fiir Technologie (KIT), Germany,
email: herda@kit.edu)

Marieke Huisman (University of Twente, The Netherlands,
email: m.huisman@utwente.nl)

Ran Ji (Technische Universitdt Darmstadt, Germany,
email: rj82cnus@cs.cmu.edu)

VI Authors’ Affiliations

Vladimir Klebanov (Karlsruher Institut fiir Technologie (KIT), Germany,
email: klebanov@kit.edu)

Wojciech Mostowski (Halmstad University, Sweden,
email: wojciech.mostowski@hh.se)

Jurriaan Rot (Radboud University, Nijmegen, The Netherlands,
email: jrot@cs.ru.nl)

Philipp Riimmer (Uppsala University, Sweden,
email: philipp.ruemmer@it.uu.se)

Christoph Scheben (Karlsruher Institut fiir Technologie (KIT), Germany,
email: scheben@ira.uka.de)

Peter H. Schmitt (Karlsruher Institut fiir Technologie (KIT), Germany,
email: pschmitt@ira.uka.de)

Mattias Ulbrich (Karlsruher Institut fiir Technologie (KIT), Germany,
email: ulbrich@kit.edu)

Nathan Wasser (Technische Universitit Darmstadt, Germany,
email: nate @sharpmind.de)

Benjamin Weif} (Karlsruher Institut fiir Technologie (KIT), Germany,
email: benjamin.weiss @alumni.uni-karlsruhe.de)

Foreword

Program verification has a long and distinguished history in computer science. As early
as 1949, Alan Turing, in a technical report titled On Checking a Large Routine, raised
the question of how to verify computer programs. Ever since that time, this problem
has been investigated by several researchers. Some of them earned the ACM Turing
Award for their work on the subject.

With this concerted effort of several scientists in mind, one would think that the
“problem” of software correctness has been “solved” by now, whatever the qualifi-
cation “solved” is supposed to mean. Nothing is further from the truth.

In books on algorithms, for example, those covering the standard material on
algorithms on data structures, the correctness of the presented algorithms is ignored or
glossed over. At best a justification of the selected algorithms is given by presenting a
mathematical argument without a rigorous explanation of why this argument can be
applied to the program in question. The point is that a program is just a piece of text,
while the presented mathematical argument refers to the program execution. The rea-
soning then tacitly presupposes an implementation that conforms to the informal
description of the program meaning given in English. This subtle gap in reasoning is
especially acute if one deals with recursive programs or programs involving dynamic
data structures.

An alternative is to rely on a large body of literature on program verification and use
one of the formal systems developed to provide rigorous correctness proofs using
axioms and proof rules. Unfortunately, formal correctness proofs are very tedious and
hence error prone. This raises a natural question: If we do not trust the correctness of a
program, why should we trust its correctness proof?

A possible answer lies in relying on mechanized verification that provides a pro-
gramming environment allowing us to check the correctness proof of a program in the
sense that each step of the proof is mechanically verified. Such a programming envi-
ronment, when properly built, allows us to treat the underlying proof system as a
parameter, just as the program that is to be verified.

Mechanized verification has a distinguished history as well, and this is not the place
to trace it. It suffices to say that the KeY project, the subject of this book, is possibly the
most ambitious endeavor in this area. It started in 1998 and gradually evolved into,
what the authors call, the KeY framework.

This framework goes beyond mechanized verification by also providing a means of
program specification, a test case generation, a teaching tool for a number of courses on
software engineering, and a debugging tool. The current book is a substantial revision
and extension of the previous edition that takes into account this evolution of the KeY
system. It systematically explains several facets of the KeY framework, starting with
the theoretical underpinning and ending with a presentation of nontrivial case studies.

VIII Foreword

I would like to congratulate the authors not only for the outcome but also for their
persistence and their vision. The current scientific climate aiming at maximizing your
number of publications and your H-index does not bode well with long-term projects.
It is refreshing to see that not everybody has yielded to it.

October 2016 Krzysztof R. Apt

Preface

Wer hat an der Uhr gedreht? Ist es wirklich schon so spdt?—Every child growing up
in the 1970s in Germany (like the author of this text) is familiar with these lines. They
are from a theme song played during the closing credits of the German version of the
Pink Panther Show. The ditty conveys the utter bafflement (“Who advanced the
clock?”) of the listener about 30 minutes of entertainment having passed in what
seemed to be mere seconds. And it is exactly this feeling that we editors have now:
What? Ten years since the first book about KeY [Beckert et al., 2007] was published?
Impossible! But of course it is possible, and there are good reasons for a new book
about KeY, this time simply called The KeY Book.

What Is New in The KeY Book?

In short: almost everything! This is not merely an overhaul of the previous book, but a
completely different volume: only eight of 15 chapters from the previous edition are
still around with a roughly similar function, while there are 11 completely new
chapters. But even most of the chapters retained were rewritten from scratch. Only
three chapters more or less kept their old structure. What happened?

First of all, there were some major technical developments in the KeY system that
required coverage as well as changes in the theoretical foundations:

e With KeY 2.x we moved from a memory model with an implicit heap to one with
explicit heaps, i.e., heaps have a type in our logic, can be quantified over, etc. As a
consequence, it was possible to:

e Implement better support for reasoning about programs with heaps [Weil3, 2011,
Schmitt et al., 2010], essentially with a variant of dynamic frames [Kassios, 2011].

e We dropped support for specification with the Object Constraint Language
(OCL) and drastically improved support for the Java Modeling Language
(JML) [Leavens et al., 2013].

e Rules and automation heuristics for a number of logical theories were added,
including finite sequences, strings [Bubel et al., 2011], and bitvectors.

e Abstract interpretation was tightly integrated with logic-based symbolic execution
[Bubel et al., 2009].

In addition, the functionality of the KeY was considerably extended. This concerns
not merely the kind of analyses that are possible, but also usability.

e Functional verification is now only one of many analyses that can be performed
with the KeY system. In addition, there is support for debugging and visualization
[Hentschel et al., 2014a,b], test case generation [Engel and Hahnle, 2007, Gladisch,
2008], information flow analysis [Darvas et al., 2005, Grahl, 2015, Do et al., 2016],
program transformation [Ji et al., 2013], and compilation [Ji, 2014].

e Preface

e There are IDEs for KeY, including an Eclipse extension, that make it easy to keep
track of proof obligations in larger projects [Hentschel et al., 2014c].

e A stripped down version of KeY, specifically developed for classroom exercises
with Hoare logic, was provided [Hiahnle and Bubel, 2008].

Finally, the increased maturity and coverage of the KeY system permitted us to
include much more substantial case studies than in the first edition.

Inevitably, some of the research strands documented in the first edition did not reach
the maturity or importance we hoped for and, therefore, were dropped. This is the case
for specification patterns, specification in natural language, induction, and proof reuse.
There is also no longer a dedicated chapter about Java integers: The relevant material is
now, in much condensed form, part of the ‘chapters on “First-Order Logic” and
“Theories.”

A number of topics that are actively researched have not yet reached sufficient
maturity to be included: merging nodes in symbolic execution proof trees, KeY for Java
bytecode, certification, runtime verification, regression verification, to name just a few.
Also left out is a variant of the KeY system for the concurrent modeling language ABS
called KeY-ABS, which allows one to prove complex properties about unbounded
programs and data structures. We are excited about all these developments, but we feel
that they have not yet reached the maturity to be documented in the KeY book. We refer
the interested reader to the research articles available from the KeY website at www.
key-project.org.

Also not covered in this book is KeYmaera, a formal verification tool for hybrid,
cyber-physical systems developed in André Platzer’s research group at CMU and that
has KeY as an ancestor. It deserves a book in its own right, which in fact has been
written [Platzer, 2010].

The Concept Behind This Book

Most books on foundations of formal specification and verification orient their pre-
sentation along traditional lines in logic. This results in a gap between the foundations
of verification and its application that is too wide for most readers. The main pre-
sentation principles of the KeY book is something that has not been changed between
the first book about KeY and this volume:

e The material is presented on an advanced level suitable for graduate (MSc level)
courses, and, of course, active researchers with an interest in verification.

e The dependency graph on the chapters in the book is not deep, such that the reader
does not have to read many chapters before the one (s)he is most interested in.
Moreover, the dependencies are not all too strong. More advanced readers may not
have to strictly follow the graph, and less advanced readers may decide to follow up
prerequisites on demand. The graph shows that the chapters on First-Order Logic,
the Java Modeling Language, and Using the KeY Prover are entirely self-contained.
The same holds for each chapter not appearing in the following graph.

http://www.key-project.org/
http://www.key-project.org/

Preface X1

10 Java Card k— |08 Proof Obl. | | 13 Inf. Flow |

12 Test Gen. 09 Modularity 15 Using KeY
14 Compilation 16 Tutorial

e The underlying verification paradigm is deductive verification in an expressive
program logic.

e As a rule, the proofs of theoretical results are not contained here, but we give
pointers on where to find them.

e The logic used for reasoning about programs is not a minimalist version suitable for
theoretical investigations, but an industrial-strength version. The first-order part is
equipped with a type system for modeling of object hierarchies, with underspeci-
fication, and with various built-in theories. The program logic covers full Java Card
and substantial parts of Java. The main omissions are: generics (a transformation
tool is available), floating-point types, threads, lambda expressions.

e Much emphasis is on specification, including the widely used JML. The generation
of proof obligations from annotated source code is discussed at length.

e Two substantial case studies are included and presented in detail.

Nevertheless, we cannot and do not claim to have fully covered formal reasoning
about (object-oriented) software in this book. One reason is that the choice of topics is
dependent on our research agenda. As a consequence, important topics in formal
verification, such as specification refinement or model checking, are out of our scope.

Typographic Conventions

We use a number of typesetting conventions to give the text a clearer structure.
Occasionally, we felt that a historical remark, a digression, or a reference to material
outside the scope of this book is required. In order to not interrupt the text flow we use
gray boxes, such as the one on page 40, whenever this is the case.

In this book a considerable number of specification and programming languages are
referred to and used for illustration. To avoid confusion we usually typeset multiline
expressions from concrete languages in a special environment that is set apart from the

X1I Preface

main text with horizontal lines and that specifies the source language as, for example,
on page 14.

Expressions from concrete languages are written in typewriter font with keywords
highlighted in boldface, the exception being UML class and feature names. These are
set in sans serif, unless class names correspond to Java types. Mathematical meta
symbols are set in math font and the rule names of logical calculi in sans serif.

Companion Website

This book has its own website at www.key-project.org/thebook2, where additional
material is provided: most importantly, the version of the KeY tool that was used to run
all the examples in the book (except for Chaps. 10,19) including all source files, for
example, programs and specifications (unless excluded for copyright reasons), various
teaching materials such as slides and exercises, and the electronic versions of papers on
KeY.

Acknowledgments We are very grateful to all researchers and students who con-
tributed with their time and expertise to the KeY project. We would like to acknowl-
edge in particular the editorial help of Dr. Daniel Grahl and Dr. Vladimir Klebanov
during the production of this book.

Many current and former KeY project members made valuable contributions to the
KeY project, even though they are not directly involved as chapter authors: Prof.
Thomas Baar (HTW Berlin), Dr. Thorsten Bormer, Dr. Adam Darvas, Dr. Crystal Din,
Huy Qouc Do, Dr. Christian Engel, Dr. Tobias Gedell, Dr. Elmar Habermalz, Dr.
Kristofer Johannisson, Michael Kirsten, Daniel Larsson, Prof. Wolfram Menzel (KIT;
emeritus, co-founder of the KeY project), Gabriele Paganelli, Prof. Aarne Ranta
(Gothenburg University), Dr. Andreas Roth, Prof. Ina Schaefer (TU Braunschweig),
Dominic Scheurer, Prof. Steffen Schlager (HS Offenburg), Prof. Shmuel Tyszberowicz
(The Academic College Tel Aviv-Yaffo), Dr. Bart van Delft, Dr. Isabel Tonin, Angela
Wallenburg, and Dr. Dennis Walter.

Besides the current and former project members and the chapter authors of this
book, many students helped with implementing the KeY system, to whom we extend
our sincere thanks: Gustav Andersson, Dr. Marcus Baum, Hans-Joachim Daniels,
Marco Drebing, Marius Hillenbrand, Eduard Kamburjan, Stefan Késdorf, Dr. Bastian
Katz, Uwe Keller, Stephan Konn, Achim Kuwertz, Denis Lohner, Moritz von Looz,
Martin Moller, Dr. Ola Olsson, Jing Pan, Sonja Pieper, Prof. André Platzer (CMU
Pittsburgh), Friedemann RoBler, Bettina Sasse, Dr. Ralf Sasse, Prof. Gabi Schmithiisen
(Universitat des Saarlandes), Max Schroder, Muhammad Ali Shah, Alex Sinner,
Hubert Schmid, Holger Stenger, Kai Wallisch, Claus Wonnemann, and Zhan
Zengrong.

The authors acknowledge support by the Deutsche Forschungsgemeinschaft
(DFG) under projects “Program-level Specification and Deductive Verification of
Security Properties” (DeduSec) and “ Fully Automatic Logic-Based Information Flow”
within Priority Programme 1496 “Reliably Secure Software Systems — RS®” and under

http://www.key-project.org/thebook2

Preface XIII

project “Deductive Regression Verification for Evolving Object-Oriented Software”
within Priority Programme 1593 “Design for Future: Managed Software Evolution,” as
well as support by the German Federal Ministry of Education and Research (Bun-
desministerium fiir Bildung und Forschung, BMBF) for project “Formale Informa-
tionsflussspezifikation und -analyse in komponentenbasierten Systemen” as part of
Software Campus. We also acknowledge support by the European Commission
(EC) under FP7 Integrated Project “Highly Adaptable & Trustworthy Software using
Formal Methods” and STREP “Engineering Virtualized Services.”

The authors have done their job. The success of the result of their toil will now be
judged by the readers. We hope they will find the text easily accessible, illuminating,
stimulating and, yes, fun to read. What can be more fun than gaining insight into what
was nebulous before or solving a problem at hand that defied a solution so far? We will
not fail to admit that besides all the labor, writing this book was fun. Putting in words
often helped us reach a better understanding of what we were writing about. Thus, it is
not easy to say who profits more, the authors in writing the book or the readers from
reading it. In the end this may be irrelevant, authors and readers together constitute the
scientific community and together they advance the state of the art. It would be the
greatest reward for us to see this happening and perhaps after another ten years, or even
earlier, a return of the pink panther.

August 2016 Wolfgang Ahrendt
Bernhard Beckert

Richard Bubel

Reiner Héhnle

Peter H. Schmitt

Mattias Ulbrich

Contents

Listof Figures

Listof Tables

1.1 WhatKeYIs
1.2 Challenges To Formal Verification.
1.3 Roles of Deductive Verification
1.3.1 Avoid the Need for Formal Specification
1.3.2 Restricted Target Language
1.3.3 Formal Verification in Teaching
1.3.4 Avoid the Need for Fully Specified Formal Semantics .
1.3.5 Where Are We Now?
1.4 The Architectureof KeY
1.4.1 ProverCore
1.4.2 Reasoning About Programs
1.4.3 Proof Obligations
144 TheFrontends
1.5 TheNextTen Years
1.5.1 Modular Architecture
1.5.2 Relational Properties Are Everywhere
1.5.3 Learning from Others
154 CodeReviews L.
1.5.5 Integration

[c <o WY I A A A

I N e T T e ey
000NN B DNDOO®

XVI

Part I Foundations

2 First-Order Logic
Introduction
Basic First-Order Logic

2.1
22

2.3

24

3.1
32

221 Syntax
222 Caleulus
2.2.3 Semantics
Extended First-Order Logic
2.3.1 Variable Binders
2.3.2 Undefinedness
First-Order Logic for Java
2.4.1 Type Hierarchy and Signature
2.4.2 Axioms for Integers
243 AxiomsforHeap
244 Axioms for Location Sets . .
245 Semantics
3 Dynamic Logic for Java
Introduction
Syntax of JavaDL.
3.2.1 Type Hierarchies
3.2.2 Signatures
3.2.3 Syntax of JavaDL Program Fragments

33

34

35

3.6

3.24 Syntax of JavaDL Terms and Formulas
Semantics

3.3.1

Kripke Structures

3.3.2 Semantics of JavaDL Terms and Formulas
Describing Transitions between States: Updates

3.4.1 Syntax and Semantics of JavaDL Updates
3.4.2 Update Simplification Rules .

The Calculus for JavaDL

3.5.1 JavaDL Rule Schemata and First-Order Rules
3.5.2 Nonprogram Rules for Modalities
3.5.3 Soundness and Completeness of the Calculus
3.54 Schema Variables for Program Constructs
3.5.5 The Active Statement in a Modality
3.5.6 The Essence of Symbolic Execution
3.5.7 Components of the Calculus

Rules for Symbolic Execution of Java Programs
3.6.1 The Basic Assignment Rule .

3.6.2 Rules for Handling General Assignments
3.6.3 Rules for Conditionals

3.6.4 Unwinding Loops

3.6.5 Replacing Method Calls by their Implementation

3.6.6 Instance Creation and Initialization
3.6.7 Handling Abrupt Termination

Contents

23
23
23
23
27
31
35
36
37
37
38
39
40
43
44

49
49
50
51
51
52
54
55
55
56
57
57
59
60
60
63
63
66
67
67
68
69
69
70
75
76
77
87
93

Contents XVII

3.7 Abstraction and Modularization Rules 97
3.7.1 Replacing Method Calls by Specifications: Contracts . 98

3.7.2 Reasoning about Unbounded Loops: Loop Invariants . 101

4 Proof Search with Taclets 107
4.1 Introduction 107
4.1.1 Purpose and Organization of this Chapter 108

42 ATacletTutorial 109
4.2.1 ABasicTheoryofLists 109

4.2.2 The List Theory in Concrete Syntax 111

4.2.3 Definitional Extension of the List Theory 114

424 Derivationof Lemmas 117

4.3 A Reference Manual of Taclets 121
4.3.1 The Taclet Language 121

4.3.2 Schema Variables 130

43.3 Applicationof Taclets 136

4.4 Reflection and Reasoning about Soundness of Taclets 138
4.4.1 Soundnessin SequentCalculi 139

4.4.2 Meaning Formulas of Sequent Taclets 140

4.4.3 Meaning Formulas for Rewriting Taclets 142

4.4.4 Elimination of Schema Variables 143

S Theories 149
5.1 Introduction o 149
5.2 Finite Sequences 149
53 Strings ... 156
5.3.1 Sequences of Characters 156

5.3.2 Regular Expressions for Sequences 158

5.3.3 Relating Java String Objects to Sequences of Characters 159

5.3.4 String Literals and the String Pool 160

5.3.5 Specification of the Java String API. 161

54 Integers 161
54.1 CorelInteger Theory 162

5.4.2 Variable Binding Integer Operations 163

5.4.3 Symbolic Execution of Integer Expressions in Programs 164

6 Abstract Interpretation 167
6.1 Introduction 167
6.2 Integrating Abstract Interpretation 168
6.2.1 Abstract Domains 168

6.2.2 Abstractions for Integers 170

6.2.3 Abstracting States L. 170

6.3 Loop Invariant Generation 171
6.4 Abstract Domains forHeaps 174
6.5 Abstract Domains for Objects 178

6.5.1 Null/Not-null Abstract Domain 179

XVIII

6.6

6.7

6.5.2 Length Abstract Domain
Extensions
6.6.1 Abstractions for Arrays
6.6.2 Loop Invariant Rule with Value and Array Abstraction .
6.6.3 Computation of the Abstract Update and Invariants

6.6.4 SymbolicPivots L.
Conclusions

Part Il Specification and Verification

7 Formal Specification with the Java Modeling Language

7.1

7.2

7.3

7.4

1.5
7.6
7.7

7.8
7.9

Introduction to Method Contracts
7.1.1 ClausesofaContract
7.1.2 Defensive Versus Offensive Method Implementations .
7.1.3 Specifications and Implementations
Expressions
7.2.1 Quantified Boolean Expressions
7.2.2 Numerical Comprehensions
7.2.3 Evaluation in the Prestate
Method Contracts in Detail
7.3.1 Visibility of Specifications
7.3.2 Specification Cases
7.3.3 Semantics of Normal Behavior Specification Cases

7.3.4 Specifications for Constructors
7.3.5 Notionsof Purity,
Class Level Specifications
7.4.1 Invariants
7.4.2 InitiallyClauses
7.4.3 History Constraints

Contents

179
184
184
184
186
187
189

193
196
196
199
200
201
201
203
204
205
205
206
208
209
209
210
211
216
217

7.4.4 Initially Clauses and History Constraints: Static

vs.Instanceo
7.4.5 Inheritance of Specifications
Nonnull Versus Nullable Object References
Exceptional Behavior
Specification-Only Class Members
7.7.1 Model Fields and Model Methods
7.7.2 Ghost Variables L.
7.7.3 Ghost Variables Versus Model Fields
Integer Semantics
Auxiliary Specification for Verification
79.1 Framing
79.2 LooplInvariants
7.9.3 Assertions and Block Contracts

218
218
220
222
225
225
229
229
230
233
233
234
238

Contents

7.10 Conclusion

7.10.1 Tool SupportforJML
7.10.2 Comparison to Other Program Annotation Languages .

8 From Specification to Proof Obligations
8.1 Formal Semantics of JML Expressions
81.1 TypesinJML

8.1.2 Translating JML Expressions to JavaDL

8.1.3 Abstract Data TypesinJML

8.1.4 Well-Definedness of Expressions

8.2 From JML Contract Annotations to JavaDL Contracts
8.2.1 Normalizing JML Contracts

8.2.2 Constructor Contracts

8.2.3 Model Methods and Model Fields

8.2.4 JavaDL Contracts

8.2.5 Loop Specifications

8.3 Proof Obligations for JavaDL Contracts
8.3.1 Proof Obligations for Functional Correctness

8.3.2 Dependency Proof Obligations

8.3.3 Well-Definedness Proof Obligations

9 Modular Specification and Verification
9.1 Modular Verification with Contracts
9.1.1 Historical and Conceptual Background

9.1.2 Example: ImplementingaList

9.1.3 Modular Program Correctness

9.1.4 Verification of Recursive Methods

9.2 Abstract Specification oL
9.2.1 ModelFields.

9.22 ModelMethods

9.3 The Frame Problem,
9.3.1 Motivation

9.3.2 Dynamic Frames

9.3.3 Proof Obligations for Dynamic Frames Specifications .

9.3.4 Example Specification with Dynamic Frames

9.4 Calculus Rules for Modular Reasoning
9.4.1 Anonymizing Updates

9.4.2 AnImproved Loop InvariantRule

9.43 A Rule for Method Contracts

9.4.4 A Rule for Dependency Contracts

9.4.5 Rules for Class Invariants

9.5 Verifying the List Example
9.6 Related Methodologies for Modular Verification

9.7 Conclusion

XIX

239
239
240

243
244
245
246
252
253
254
255
264
265
268
271
272
272
278
279

289
291
291
294
296
298
300
302
311
319
320
322
324
325
328
329
330
336
339
341
343
347
351

XX Contents

10 Verifying Java Card Programs 353
10.1 Introduction 353
10.2 Java Card Technology 354
10.3 Java Card Transactions on ExplicitHeaps 357

10.3.1 Basic Transaction Roll-Back 358
10.3.2 Transaction Marking and Balancing 359
10.3.3 Object Creation and Deletion 360
10.3.4 Persistent and Transient Arrays 361
10.3.5 Nonatomic Updates 363
10.4 Taclets forthe New Rules 364
10.5 Modular Reasoning with Multiple Heaps 367
10.6 Java Card Verification Samples 368
10.6.1 Conditional Balance Updating 369
10.6.2 Reference Implementation of a Library Method 370
10.6.3 Transaction Resistant PIN Try Counter 374
10.7 Summary and Discussion 376
10.7.1 Related Work, 377
10.7.2 On-going and Future Research 377
10.7.3 Multiple Heaps for Concurrent Reasoning 377

Part III From Verification to Analysis

11 Debugging and Visualization 383
11.1 Introduction 383
11.2 Symbolic Execution 385
11.3 Symbolic Execution Debugger. 390

11.3.1 Inmstallation 390
1132 BasicUsage 391
11.3.3 Debugging with Symbolic Execution Trees 395
11.3.4 Debugging with Memory Layouts 397
11.3.5 Help Program and Specification Understanding 398
11.3.6 Debugging Meets Verification 399
11.3.7 Architecture 401
11.4 A Symbolic Execution Engine basedon KeY 403
11.4.1 Symbolic Execution Tree Generation 403
11.4.2 Branch and Path Conditions 407
11.4.3 Hiding the Execution of Query Methods 408
1144 SymbolicCall Stack 409
11.4.5 Method Return Values 409
1146 CurrentState 410
11.47 Controlled Execution 411
11.4.8 Memory Layouts 411

11.5 Conclusion And Future Work 412

Contents

12 Proof-based Test Case Generation
Introduction
A Quick Tutorial
1221 Setup o
1222 Usageo e
12.2.3 Options and Settings
Test Cases, Test Suites, and Test Criteria

12.1
12.2

12.3
12.4

12.5
12.6

12.7

12.8

12.9

13 Information Flow Analysis
Introduction oL
Specification and the Attacker Model
Formal Definition of Secure Information Flow
Specifying Information Flow inJML
Information Flow Verification with KeY
13.5.1 Efficient Double Symbolic Execution
13.5.2 Using Efficient Double Symbolic Execution in KeY . .
Summary and Conclusion

13.1
13.2
13.3
13.4
13.5

13.6

14 Program Transformation and Compilation

14.1

14.2

Application Scenarios and Variations of the Test Generator

12.4.1 KeYTestGen for Test Case Generation
12.4.2 KeYTestGen for Formal Verification
Architecture of KeYTestGen
Proof-based Constraint Construction for Test Input Data

12.6.1 Symbolic Execution for Test Constraint Generation

12.6.2 Implicit Case Distinctions
12.6.3 Infeasible Path Filtering
12.6.4 Using Loop Unwinding and Method Inlining
12.6.5 Using Loop Invariants and Method Contracts
From Constraints to Test InputData
12.7.1 The Type System
12.7.2 Preserving the Semantics of Interpreted Functions . . .
12.7.3 Preventing Integer Overflows
12.7.4 Model Extraction
Specification-based Test Oracle Generation
12.8.1 Generating a Test Oracle from the Postcondition
12.8.2 Using a Runtime Assertion Checker
Synthesizing Executable Test Cases
12.10 Perspectives and Related Work
12.11 Summary and Conclusion

Interleaving Symbolic Execution and Partial Evaluation

14.1.1 Generalldea
14.1.2 The Program Specialization Operator
14.1.3 Specific Specialization Actions
1414 Example
Verified Correct Compilation

XXI

415
415
416
417
417
419
421
426
426
427
428
430
430
431
432
433
434
437
439
440
441
442
442
442
445
445
448
450

453
453
455
457
458
460
461
469
470

473
474
474
478
479
481
482

XXII Contents

14.3 Implementation and Evaluation 491
144 Conclusion 492

Part IV The KeY System in Action

15 Using the KeY Prover 495
15.1 Introduction, 495
15.2 Exploring KeY Artifacts and Prover Simultaneously 498

15.2.1 Exploring Basic Notions And Usage 499
15.2.2 Exploring Terms, Quantification, and Instantiation . . . 511
15.2.3 Exploring Programs in Formulas 515
15.3 Understanding Proof Situations 532
154 Further Features 537
15,5 WhatNext?. oo 539

16 Formal Verification with KeY: A Tutorial 541
16.1 Introduction 541
16.2 A Program withoutLoops, 543
16.3 A Brief Primer on Loop Invariants 546

16.3.1 Introduction 546
16.3.2 Why Are Loop Invariants Needed? 547
16.3.3 What Is A Loop Invariant? 547
16.3.4 Goal-Oriented Derivation of Loop Invariants 549
16.3.5 Generalization 550
16.3.6 Recovering the Context 551
16.3.7 Proving Termination 553
16.3.8 A More Complex Example 555
16.3.9 Invariants: Concluding Remarks 557
16.4 AProgramwithLoops 558
16.5 Data Type Properties of Programs 562
166 KeYandEclipse 565
16.6.1 Installation 566
16.6.2 Proof Management with KeY Projects 566
16.6.3 Proof Results viaMarker 567
16.6.4 The Overall Verification Status 568

17 KeY-Hoare 571
17.1 Introduction 571
17.2 The Programming Language 572
17.3 Background 573

17.3.1 First-Order Logic 573
17.3.2 Hoare Calculus 574
17.4 Hoare Logic with Updates 575
17.4.1 StateUpdates 576

17.4.2 Hoare Triples with Update 577

Contents

17.5
17.6

17.7

17.4.3 Hoare Style Calculus with Updates
17.4.4 Rules for Updates
Using KeY-Hoare
Variants of the Hoare Logic with Updates
17.6.1 Total Correctness
17.6.2 Worst-Case Execution Time
A Brief Reference Manual for KeY-Hoare
17.7.1 Installation
17.7.2 Formula Syntax
17.7.3 InputFile Format
17.7.4 Loading and Saving Problems and Proofs
1775 Proving
17.7.6 Automation,

Part V Case Studies

18 Verification of an Electronic Voting System
Electronic Voting,
OVerview o o vt
18.2.1 Verification of Cryptographic Software
18.2.2 Verification Approach
18.2.3 System Description
Specification and Verification
18.3.1 Specification
18.3.2 Verification
Discussion
18.4.1 A Hybrid Approach to Information Flow Analysis . . .
18.4.2 Related Work
1843 Conclusion.,

18.1
18.2

18.3

18.4

19 Verification of Counting Sort and Radix Sort
Counting Sort and Radix Sort Implementation
High-Level Correctness Proof
19.2.1 General Auxiliary Functions
19.2.2 Counting Sort Proof
19.2.3 Radix SortProof
Experience Report

19.1
19.2

19.3

Part VI Appendices

A Java Modeling Language Reference
JML Syntax e
JML Expression Semantics
JML Expression Well-Definedness

A.l
A2
A3

XXIII

577
579
580
582
582
582
584
584
585
585
587
588
589

593
593
594
595
595
596
599
599
603
605
605
606
607

609
609
612
613
614
615
617

621
621
625
628

XXIV

B KeY File Reference
Predefined Operators inJavaDL

B.1

B.2

References

B.1.1
B.1.2
B.1.3
B.1.4
B.1.5
B.1.6
B.1.7
B.1.8
B.1.9

Arithmetic Functions
Arithmetic Functions with Modulo Semantics
Predicates for Arithmetics and Equality
Integer Semantics Dependent Functions
Integer Semantics Dependent Predicate Symbols
Heap Related Function and Predicate Symbols
Location Sets Related Function and Predicate Symbols
Finite Sequence Related Function and Predicate Symbols
Map Related Function and Predicate Symbols

The KeY Syntax

B.2.1
B.2.2
B.2.3
B24
B.2.5

Notation, Keywords, Identifiers, Numbers, Strings . . .
Terms and Formulas
RuleFiles
User Problem and Proof Files
Schematic Java Syntax

Contents

631
631
631
632
634
634
636
636
637
638
639
640
641
643
651
659
662

667
691

List of Figures

1.1 Architecture of the KeY toolset 11
1.2 GUI of the KeY system with a loaded proof obligation 15
2.1 First-order rules for the logic FOL 28
2.2 Equality rules for the logic FOL 30
23 Mandatory JFOL type hierarchy 38
2.4 Mandatory JFOL vocabulary 39
2.5 Integer axioms andrules 39
2.6 Rules for the theory of arrays. 41
2.7 Rules for the predicate wellFormed 42
2.8 Axioms for functions related to Javatypes 43
29 Rules for data type LocSet 44
2.10 Semanticsontypedomains. 45
2.11 Semantics for the mandatory JFOL vocabulary 46
2.12 Semantics for the predicate wellFormed 47
3.1 An example program with method overriding 82
32 Initialization part in a schematicclass 88
33 Mapping of a class declaration to initialization schema 89
34 Implicit method <prepare>() 91
35 Example for constructor normal form 92
3.6 Building the constructor normal form 93
3.7 Method contractrule 100
3.8 Basic loop invariantrule 102
39 Invariant rule for loops with side effects in the loop condition 104
3.10 Invariant rule for loops with abrupt termination 106
4.1 Vocabulary and induction axiom for a simplified theory of lists 111
4.2 Inductive example proof 114

4.3 Vocabulary and axioms for defined list functions 115

XXVI

4.4
4.5

5.1
5.2
53
54
5.5
5.6
5.7

6.1
6.2
6.3
6.4
6.5
6.6
6.7
6.8
6.9
6.10
6.11

8.1
8.2

9.1
9.2
9.3
9.4

11.1
11.2
11.3
11.4
11.5
11.6
11.7
11.8
11.9
11.10
11.11
11.12
11.13

List of Figures
Derived taclets for the list theory 118
The tacletsyntax 122
The vocabulary of finite sequences 150
Axioms of the core theory of finite sequences 150
Definition of segDepth 152
Definition for noncore vocabulary in mathematical notation 153
Some derived rules for finite sequences 154
Some derived rules for permutations 155
Axioms for clindexOfChar and clContains 158
Example abstract domain for vehicles 168
Sign Domain: An abstract domain for integers 170
Instantiation of the heap abstract domain for fields 177
Instantiation of the heap abstract domain for arrays 177
Abstract domain for objects L 179
Length-based abstract domain for objects 180
Family of abstract domains for object based on exact type 181
Galois connection for object abstract domain based on types . 181
Example instantiation of abstract domain for objects 182
Galois connection for combining object abstract domains . . . 183
Combined object abstract domain 183
Flattening a nested JML specification 256
The type hierarchy of exceptionsinJava. 261
A list interface and its implementations 294
Listings of Cell/Recellexample 315
Listings of Cel1/Recell example annotated with model methods 317
Proof structure for Client methodm 345
Symbolic execution tree of methodmin 386
Symbolic execution tree of method sum 387
Symbolic execution tree of method sum using a loop invariant 388
Symbolic execution tree of method run 389
Symbolic execution tree of method average using contracts . 391
SED: Interactive symbolic execution 393
SED: Collapsed frame 394
SED: Possible memory layouts of a symbolic state 395
Symbolic execution tree of mergesort 396
Initial symbolic object diagram: AVL rotate left 398
Current symbolic object diagram: AVL rotate left 399
Symbolic execution tree of method index0f 401
Architecture of the Symbolic Execution Debugger (SED) . . . 402

List of Figures XXVII

12.1 The Test Suite Generation window 419
12.2 TestGen macro and Finish symbolic execution macro 420
12.3 Use-cases of KeYTestGen 427
124 Components and workflow of KeYTestGen 428
125 SMTsolveroptions« .. oo 438
12.6 OpenJML output for array copy 446
13.1 Program declassifying the sumof anarray 459
13.2 Program with multiple information flow contracts 459
13.3 Example of a secure program 461
13.4 Control flow graphs: Original vs. self-composition 462
13.5 Reducing verification overhead by compositional reasoning . 463
13.6 Proof tree of information flow example 468
14.1 Simple control circuit: Source and control flow graph 475
14.2 Symbolic execution tree of the control circuit program 475
14.3 Partial evaluation of a simple control circuit program 476
14.4 Symbolic execution with interleaved partial evaluation 477
14.5 Type hierarchy for the GUl example 482
14.6 Work flow of synthesizingloop 487
14.7 Symbolic execution tree until conditional 488
14.8 Symbolic execution tree of then branch 488
149 Symbolic execution tree of else branch 489
14.10 Source code of the Power example 492
15.1 Verification process using the KeY system 496
16.1 The KeY verification workflow 542
16.2 Mapping loop execution into a well-founded order 554
16.3 Condensed finished prooftree 561
16.4 Strategy macros.o 564
16.5 Sequent after application of rule seqPermFromSwap 565
16.6 KeY project with example content 567
16.7 Closed and open proof marker 568
16.8 Recursive specificationmarker 569
16.9 The overall verification status 569
17.1 Rules of standard Hoare calculus. 575
17.2 Rules of Hoare calculus with updates. 578
17.3 Rewrite rules for update computation. 579
17.4 Loop invariant rule for total correctness. 582
17.5 Loop invariant rule for execution time reasoning 583
17.6 Worst-case execution time specification 583
17.7 Input file for the searchMax example. 586
17.8 Inputfile grammar 587

17.9 Screen shot of KeY-Hoare system 588

XXVIII List of Figures

18.1 UML class diagram of the e-voting system 597
18.2 The overall protocol of the e-voting system 598
19.1 Iterations of the last loop in Counting sort 611

19.2 Successive iterations of the Radix sortloop 611

List of Tables

3.1
32
33
34
3.5
3.6

4.1
4.2
4.3
4.4

5.1
52
5.3
54

8.1
8.2
8.3

11.1
11.2
11.3

12.1

Al
A2
A3
A4

Simplification rules forupdates
Names of schema variables and theirkinds
Components of rule assignmentSavelocation for fields
Components of rule assignmentSavelocation for arrays

Implicit object repository and status fields
Implicit methods for object creation and initialization

Matrix of different taclet modes and different find patterns
Most importantrule setsinKeY 000
Kinds of schema variables in the context of a type hierarchy
Examples of schematic expressions and their instantiations . .

The additional vocabulary for the theory of Strings
Pattern expressionso oo
Core and extension functions for the int datatype
Functions for Java arithmetics

Defined operations on the \seqinJML
Default values for absent clauses and operators
Clauses in JML loop specifications

Symbolic execution tree nodes
Views of perspective Symbolic Debug
Classification of proof nodes for SEtrees

MC/DC coverage example

Additional class membersinJML00 L.
Contract grammarinJML
ModifiersinJML L oL
JML annotation grammar

59
66
72
72
87
88

126
131
132
135

157
158
162
162

253
260
271

392
393
405

425

622
622
623
623

XXX

A5
A.6
AT
A8
A9
A.10
A.ll
A.12
A.13
A.14
A.l5
A.16

JML expression grammar
Translation of Boolean JML operators . .

List of Tables

Translation of special Boolean JML operators

Predicates on locationsets
Translation of Java integer expressions . .
Translation of comprehension expressions

Restrictions on JavaDL types to match JML types
Translation of special JML operators of arbitrary type

Reference expressions
JML location set expressions
JML sequence expressions
Definition of the well-definedness operator

624
625
625
625
626
627
627
628
628
629
629
630

List of Listings

6.1
6.2

7.1
7.2
7.3
7.4
1.5
7.6
1.7
7.8
7.9
7.10
7.11
7.12
7.13
7.14
7.15
7.16

8.1
8.2
8.3
8.4
8.5

9.1
9.2
9.3
9.4
9.5

Type declarations.,
Example program for array abstraction.

First JML example specification
Class CStudent with spec_public variables ..
Specifying limited size integerset.............
Interface Student with class level specifications
Interface CallBack.ooveuunneenenn.
Invariant broken during callback
Checking history constraints
Class AVerage.c.ouuvineeeennnneeennn.
Class Average2ooiiiiin.
Relational represents clause

Interface Student with model fields and an implementation.

Using a ghost field to track recursion depth

Full specification of Student with assignable clauses
Loop invariant example to search an element in an array

Loop invariant example to compute the sum of an
Usage of a block contract to swap two values . . .

array.........

JML functional method contract specification case template
JML method dependency contract specification case template . . .
Example of a JML method contract prior to desugaring

Example of desugared JML method contract
The two semantics of assignable clauses

Linked list implementation of the List interface

Nonempty lists is a behavioral subtype to lists ..
Java interface List specified using pure methods
Interface specification using a model field
ArrayList implementation of the List interface

182
185

198
206
207
212
213
214
218
223
224
227
228
230
235
236
237
238

256
256
264
265
276

295
296
301
304
305

XXXII List of Listings

9.6 Cell/Recell annotated with footprint specifications........... 318
9.7 Client code using two instances of the List interface 321
9.8 Client specification exposing implementation by using framing .. 321
9.9 List specification using pure methods and dynamic frames 326
9.10 List client specified with dynamic frames 327
9.11 ArrayList implementation of the List interface 329
11.1 Minimum of tWO INteETso vttt e e 385
11.2 Sumofall arrayelements..................... 387
11.3 Wrong and weak loop invariants 388
11.4 Method call with inheritance 389
11.5 Method contract of method sum 390
11.6 Average of all array elements................. ..., 390
11.7 Defective part of a mergesort implementation 397
11.8 Exception thrown by mergesortoooiiiinnn... 398
11.9 A defective and only partially specified implementation 400
12.1 Method arrCopy violates its contract. 416
12.2 First example where branch coverage is difficult to achieve. 435
12.3 Second example where branch coverage is difficult to achieve ... 435
12.4 Generated test oracle for array copyc.covveieennnen... 443
12.5 Generated test case for array Copyovvvvvvnneneennnenn.. 447
13.1 Example for an explicitleak 453
13.2 Example for an implicitleak, 454
14.1 Generated program: Simple example 490
14.2 Generated specialized programccoiineon. 491
16.1 First example: Postincrementcoiiiaaa... 543
16.2 Second example: Sorting an arrayoeeeeiinnaa.. 559
16.3 Third example: Permutationsc.cooviivenna.... 563
18.1 Implementation and functional contract for method main 599
18.2 Information flow contract for the main() method.............. 600
18.3 Loop invariant for the loop in methodmain................... 601
18.4 Information flow contract of publishResult. 602
18.5 Declaration of the interface Environment. 603
18.6 Contract of method onSendBallot 604
19.1 Counting SOTt . . v vttt e e ettt 610
19.2 RadiX SOTE. .o v vttt et e et e e e e 611
19.3 Generic SOrting CONLractuuuuuunnninnanannnnn.. 612

19.4 Contract specifying stability oo 613

	Foreword
	Preface
	Contents
	List of Figures
	List of Tables
	List of Listings

