Skip to main content

Physarum Inspired Audio: From Oscillatory Sonification to Memristor Music

  • Chapter
  • First Online:
Book cover Guide to Unconventional Computing for Music

Abstract

Slime mould Physarum polycephalum is a single-celled amoeboid organism known to possess features of a membrane-bound reaction–diffusion medium with memristive properties. Studies of oscillatory and memristive dynamics of the organism suggest a role for behaviour interpretation via sonification and, potentially, musical composition. Using a simple particle model, we initially explore how sonification of oscillatory dynamics can allow the audio representation of the different behavioural patterns of Physarum. Physarum shows memristive properties. At a higher level, we undertook a study of the use of a memristor network for music generation, making use of the memristor ’s memory to go beyond the Markov hypothesis. Seed transition matrices are created and populated using memristor equations, and which are shown to generate musical melodies and change in style over time as a result of feedback into the transition matrix. The spiking properties of simple memristor networks are demonstrated and discussed with reference to applications of music making.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 59.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 79.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 79.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Technically, the memristor’s memory is dependent on its entire history from \( - \infty \) to now; in practice, it is possible to ‘zero’ a memristor’s memory.

  2. 2.

    As energy cannot be created or destroyed, a change in voltage should change the voltage drop across the rest of the network instantaneously. Whether this change is actually instantaneous or proceeds at the speed of light is a question for relativity physicists.

References

  • Adamatzky, A. (2010). Physarum machines: computers from slime mould, Vol. 74. World Scientific.

    Google Scholar 

  • Adamatzky, A. (2013a). Physarum wires: Self-growing self-repairing smart wires made from slime mould. Biomedical Engineering Letters, 3(4), 232–241.

    Article  Google Scholar 

  • Adamatzky, A. (2013b). Slime mould tactile sensor. Sensors and actuators B: chemical, 188, 38–44.

    Article  Google Scholar 

  • Adamatzky, A. (2013c). Towards slime mould colour sensor: Recognition of colours by Physarum polycephalum. Organic Electronics, 14(12), 3355–3361.

    Article  Google Scholar 

  • Adamatzky, A. (2014). Slime mould electronic oscillators. Microelectronic Engineering, 124, 58–65.

    Article  Google Scholar 

  • Adamatzky, A. (2015). Thirty eight things to do with live slime mould. arXiv preprint arXiv:1512.08230.

  • Adamatzky, A. (Ed.). (2016). Advances in unconventional computing. Springer.

    Google Scholar 

  • Adamatzky, A. (Ed.). (2016). Advances in Physarum machines: Sensing and computing with slime mould. Springer.

    Google Scholar 

  • Adamatzky, A. (2016). Advances in Physarum machines: Sensing and computing with slime mould, Vol. 21. Springer.

    Google Scholar 

  • Adamatzky, A., & Jones, J. (2011). On electrical correlates of Physarum polycephalum spatial activity: Can we see Physarum machine in the dark? Biophysical Reviews and Letters, 6, 29–57.

    Article  Google Scholar 

  • Adamatzky, A., & Prokopenko, M. (2012). Slime mould evaluation of australian motorways. IJPEDS, 27(4), 275–295.

    Google Scholar 

  • Adamatzky, A., & Teuscher, C. (Eds.) (2006). From utopian to genuine unconventional computers. Luniver press.

    Google Scholar 

  • Adamatzky, A., Bull, L., & De Lacy Costello, B. (Eds.). (2007). Unconventional computing 2007. Luniver Press.

    Google Scholar 

  • Adamatzky, A., Akl, S. G., Alonso-Sanz, R., van Dessel, W., Ibrahim, Z., Ilachinski, A., & Jones, J. (2013). Are motorways rational from slime mould’s point of view? IJPEDS, 28(3):230–248.

    Google Scholar 

  • Aguiar, P. M., Hornby, R., McGarry, C., O’Keefe, S., & Sebald, A. (2016). Discrete and continuous systems of logic in nuclear magnetic resonance. IJUC, 12(2–3), 109–132.

    Google Scholar 

  • Akl, S. G. (2014). What is computation? IJPEDS, 29(4), 337–345.

    Google Scholar 

  • Aono, M., Zhu, L., & Hara, M. (2011). Amoeba-based neurocomputing for 8-city traveling salesman problem. IJUC, 7(6), 463–480.

    Google Scholar 

  • Brooks Jr., F. P., Neumann, P. G., Hopkins Jr., A. L., & Wright, W. V. (1992). An experiment in musical composition. MIT Press.

    Google Scholar 

  • Brown, D. E. (1991). Human universals. Temple University Press.

    Google Scholar 

  • Bull, Larry. (2016). On the evolution of boolean networks for computation: A guide RNA mechanism. IJPEDS, 31(2), 101–113.

    Google Scholar 

  • Chua, L. O. (1971). Memristor-the missing circuit element. IEEE Transactions on Circuit Theory, 18(5), 507–519.

    Google Scholar 

  • Chua, L. O. (1971b). Memristor—The missing circuit element. IEEE Transactions on Circuit Theory, 18, 507–519.

    Article  Google Scholar 

  • Chua, L., Sbitnev, V., & Kim, H. (2012a). Hodgkin-huxley axon is made of memristors. International Journal of Bifurcation and Chaos, 22:1230011 (48 pp).

    Google Scholar 

  • Chua, L., Sbitnev, V., & Kim, H. (2012). Neurons are poised near the edge of chaos. International Journal of Bifurcation and Chaos, 11:1250098 (49 pp).

    Google Scholar 

  • Cieslawska, M., & Grebecki, A. (1979). Synchrony of contractions in freely migrating plasmodia of Physarum polycephalum. Acta Protozoologica.

    Google Scholar 

  • Cifarelli, A., Dimonte, A., Berzina, T., & Erokhin, V. (2014). Non-linear bioelectronic element: Schottky effect and electrochemistry. International Journal of Unconventional Computing, 10(5–6), 375–379.

    Google Scholar 

  • Cihodariu, M. (2011). A rough guide to musical anthropology. Journal of Comparative Research in Anthropology and Sociology, 2, 183–195.

    Google Scholar 

  • Dourvas, N. I., Sirakoulis, G. C., & Tsalides, P. (2015). Gpu implementation of physarum cellular automata model. In Proceedings of the International Conference on Numerical Analysis and Applied Mathematics 2014 (ICNAAM-2014) (Vol. 1648, p. 580019). AIP Publishing.

    Google Scholar 

  • Dourvas, N., Tsompanas, M.-A., Sirakoulis, G. C., & Tsalides, P. (2015b). Hardware acceleration of cellular automata Physarum polycephalum model. Parallel Processing Letters, 25(01), 1540006.

    Article  MathSciNet  Google Scholar 

  • Dourvas, N., Tsompanas, M.-A., Sirakoulis, G. C., & Tsalides, P. (2015c). Hardware acceleration of cellular automata Physarum polycephalum model. Parallel Processing Letters, 25(01), 1540006.

    Article  MathSciNet  Google Scholar 

  • Gale, E., & Adamatzky, A. (2016). Translating slime mould responses: A novel way to present data to the public. In A. Adamatzky (Ed.), Advances in Physarum Machines, Heidelberg: Springer.

    Google Scholar 

  • Gale, E., Pearson, D., Kitson, S., Adamatzky, A., & De Lacy Costello, B. (2011). Aluminium electrodes effect the operation of titanium oxide sol-gel memristors. arXiv:1106.6293v1

  • Gale, E. M., De Lacy Costello, B., & Adamatzky, A. (2012, Sept.). Observation and characterization of memristor current spikes and their application to neuromorphic computation. In 2012 International Conference on Numerical Analysis and Applied Mathematics (ICNAAM 2012), Kos, Greece.

    Google Scholar 

  • Gale, E., De Lacy Costello, B., & Adamatzky, A. (2012b). Memristor-based information gathering approaches, both ant-inspired and hypothetical. Nano Communication Networks, 3, 203–216.

    Article  Google Scholar 

  • Gale, E., Pearson, D., Kitson, S., Adamatzky, A., & De Lacy Costello, B. (2012, June). The memory-conservation model of memristance. In Technical digest of frontiers in electronic materials (pp. 538–539). Nature Conference, Wiley-VCH.

    Google Scholar 

  • Gale, E. M., De Lacy Costello, B., & Adamatzky, A. (2012, November). The effect of electrode size on memristor properties: An experimental and theoretical study. In 2012 IEEE International Conference on Electronics Design, Systems and Applications (ICEDSA 2012), Kuala Lumpur, Malaysia.

    Google Scholar 

  • Gale, E., Adamatzky, A., & De Lacy Costello, B. (2013). Slime mould memristors. BioNanoScience, 5(1), 1–8.

    Google Scholar 

  • Gale, E., Adamatzky, A., & De Lacy Costello, B. (Forthcoming). Drop-coated memristors.

    Google Scholar 

  • Gergel-Hackett, N., Hamadani, B., Dunlap, B., Suehle, J., Richer, C., Hacker, C., et al. (2009). A flexible solution-processed memrister. IEEE Electron Device Letters, 30, 706–708.

    Article  Google Scholar 

  • Giavitto, J.-L., Michel, O., & Spicher, A. (2013). Unconventional and nested computations in spatial computing. IJUC, 9(1–2), 71–95.

    Google Scholar 

  • Goodman, E. M. (1972). Axenic culture of myxamoebae of the myxomycete Physarum polycephalum. Journal of Bacteriology, 111(1), 242–247.

    Google Scholar 

  • Grebecki, A., & Cieslawska, M. (1978). Plasmodium of Physarum polycephalum as a synchronous contractile system. Cytobiologie, 17(2), 335–342.

    Google Scholar 

  • Howard, D., Gale, E., Bull, L., De Lacy Costello, B., & Adamatzky, A. (2012). Evolution of plastic learning in spiking networks via memristive connections. IEEE Transactions on Evolutionary Computation, 16, 711–729.

    Google Scholar 

  • Igarashi, Y., & Gorecki, J. (2011). Chemical diodes built with controlled excitable. IJUC, 7(3), 141–158.

    Google Scholar 

  • Janmey, P. A. (1998). The cytoskeleton and cell signaling: Component localization and mechanical coupling. Physiological Reviews, 78(3), 763–781.

    Google Scholar 

  • Jones, J. (2010). The emergence and dynamical evolution of complex transport networks from simple low-level behaviours. International Journal of Unconventional Computing, 6, 125–144.

    Google Scholar 

  • Jones, J. (2015). From pattern formation to material computation: Multi-agent modelling of Physarum polycephalum, Vol. 15. Springer.

    Google Scholar 

  • Jones, J., & Adamatzky, A. (2012). Emergence of self-organized amoeboid movement in a multi-agent approximation of Physarum polycephalum. Bioinspiration and Biomimetics, 7(1), 016009.

    Article  Google Scholar 

  • Jones, J., & Adamatzky, A. (2015). Approximation of statistical analysis and estimation by morphological adaptation in a model of slime mould. IJUC, 11(1), 37–62.

    Google Scholar 

  • Kalogeiton, V. S., Papadopoulos, D. P., & Sirakoulis, G. C. (2014). Hey physarum! can you perform slam? International Journal of Unconventional Computing, 10(4), 271–293.

    Google Scholar 

  • Kalogeiton, V. S., Papadopoulos, D. P., Georgilas, I. P., Sirakoulis, G. C., & Adamatzky, A. I. (2015). Cellular automaton model of crowd evacuation inspired by slime mould. International Journal of General Systems, 44(3), 354–391.

    Article  MathSciNet  MATH  Google Scholar 

  • Kessler, D. (1982). Plasmodial structure and motility. In H. C. Aldrich & J. W. Daniel (Eds.), Cell biology of Physarum and Didymium.

    Google Scholar 

  • Kirke, A., & Miranda, E. (Eds.). (2012). Computing for expressive music performance. Springer.

    Google Scholar 

  • Konkoli, Z. (2015). A perspective on putnam’s realizability theorem in the context of unconventional computation. IJUC, 11(1), 83–102.

    Google Scholar 

  • Mayne, R., & Adamatzky, A. (2015). Slime mould foraging behaviour as optically coupled logical operations. International Journal of General Systems, 44(3), 305–313.

    Article  MathSciNet  MATH  Google Scholar 

  • Mayne, R., Tsompanas, M.-A., Sirakoulis, G. C. H., & Adamatzky, A. (2015a). Towards a slime mould-fpga interface. Biomedical Engineering Letters, 5(1), 51–57.

    Article  Google Scholar 

  • Mayne, Richard, Adamatzky, Andrew, & Jones, Jeff. (2015b). On the role of the plasmodial cytoskeleton in facilitating intelligent behavior in slime mold Physarum polycephalum. Communicative and Integrative Biology, 8(4), e1059007.

    Article  Google Scholar 

  • Miranda, E. R., Bull, L., Gueguen, F., & Uroukov, I. S. (2009). Computer music meets unconventional computing: Towards sound synthesis with in vitro neuronal network. Computer Music, 33, 9–18.

    Article  Google Scholar 

  • Miranda, E., Adamatzky, A., & Jones, J. (2011). Sounds synthesis with slime mould of Physarum polycephalum. Journal of Bionic Engineering, 8(2), 107–113.

    Google Scholar 

  • Mohid, M., & Miller, J. F. (2015). Evolving solutions to computational problems using carbon nanotubes. IJUC, 11(3–4), 245–281.

    Google Scholar 

  • Morey, R. (1940). Upset in emotions. Journal of Social Psychology, 12, 355–356.

    Article  Google Scholar 

  • Nishiyama, Y., Gunji, Y.-P., & Adamatzky, A. (2013). Collision-based computing implemented by soldier crab swarms. IJPEDS, 28(1), 67–74.

    Google Scholar 

  • Pershin, Y. V., & Di Ventra, M. (2010). Experimental demonstration of associative memory with memristive neural networks. Neural Networks, 23(7), 881–886.

    Google Scholar 

  • Roy, P., Pachet, F., & Barbieri, G. (2001). Finite-length markov processes with constraints. In Proceedings of the Twenty-second International Joint Conference on Artificial Intelligence, pp. 635–641.

    Google Scholar 

  • Stephenson, S. L. S., & Steven, L. et al. (1994). Myxomycetes; a handbook of slime molds. Timber Press.

    Google Scholar 

  • Strukov, D. B., Snider, G. S., Stewart, D. R., & Stanley Williams, R. (2008). The missing memristor found. Nature, 453(7191), 80–83.

    Google Scholar 

  • Takagi, S., & Ueda, T. (2008). Emergence and transitions of dynamic patterns of thickness oscillation of the plasmodium of the true slime mold Physarum polycephalum. Physica D: Nonlinear Phenomena, 237, 420–427.

    Article  Google Scholar 

  • Takamatsu, A., & Fujii, T. (2002). Construction of a living coupled oscillator system of plasmodial slime mold by a microfabricated structure. Sensors Update, 10(1), 33–46.

    Article  Google Scholar 

  • Tarabella, G., D’Angelo, P., Cifarelli, A., Dimonte, A., Romeo, A., Berzina, T., et al. (2015). A hybrid living/organic electrochemical transistor based on the Physarum polycephalum cell endowed with both sensing and memristive properties. Chemical Science, 6(5), 2859–2868.

    Article  Google Scholar 

  • Tsompanas, M. A. I., & Sirakoulis, G. C. (2012). Modeling and hardware implementation of an amoeba-like cellular automaton. Bioinspiration & Biomimetics, 7(3), 036013.

    Article  Google Scholar 

  • Tsompanas, M. A. I., Sirakoulis, G. C., & Adamatzky, A. I. (2015). Evolving transport networks with cellular automata models inspired by slime mould. IEEE Transactions on Cybernetics, 45(9), 1887–1899.

    Article  Google Scholar 

  • Tsuda, S., & Jones, J. (2010). The emergence of synchronization behavior in Physarum polycephalum and its particle approximation. Biosystems, 103, 331–341.

    Article  Google Scholar 

  • Tsuda, S., Zauner, K.-P., & Gunji, Y.-P. (2006). Robot control: From silicon circuitry to cells. Biologically Inspired Approaches to Advanced Information Technology, 20–32.

    Google Scholar 

  • Uchida, A., Ito, Y., & Nakano, K. (2014). Accelerating ant colony optimisation for the travelling salesman problem on the GPU. IJPEDS, 29(4), 401–420.

    Google Scholar 

  • Von Neumann, John. (1966). Theory of self-reproducing automata. Champaign, IL, USA: University of Illinois Press.

    Google Scholar 

  • Whiting, J. G. H., De Lacy Costello, B. P. J., & Adamatzky, A. (2014a). Towards slime mould chemical sensor: Mapping chemical inputs onto electrical potential dynamics of Physarum polycephalum. Sensors and Actuators B: Chemical, 191, 844–853.

    Article  Google Scholar 

  • Whiting, J. G. H., De Lacy Costello, B. P. J., & Adamatzky, A. (2014b). Slime mould logic gates based on frequency changes of electrical potential oscillation. Biosystems, 124, 21–25.

    Article  Google Scholar 

  • Whiting, J. G. H., De Lacy Costello, B. P. J., & Adamatzky, A. (2015). Transfer function of protoplasmic tubes of Physarum polycephalum. Biosystems, 128, 48–51.

    Article  Google Scholar 

  • Williams, S. (2012, June). Dynamics and applications of non-volatile and locally active memristors. Talk.

    Google Scholar 

Download references

Acknowledgments

This work was supported by EPSRC grant EP/H01438/1 and the EU research project ‘Physarum Chip: Growing Computers from Slime Mould’ (FP7 ICT Ref 316366).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Andrew Adamatzky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Gale, E., Matthews, O., Jones, J., Mayne, R., Sirakoulis, G., Adamatzky, A. (2017). Physarum Inspired Audio: From Oscillatory Sonification to Memristor Music. In: Miranda, E. (eds) Guide to Unconventional Computing for Music. Springer, Cham. https://doi.org/10.1007/978-3-319-49881-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49881-2_7

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49880-5

  • Online ISBN: 978-3-319-49881-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics