Skip to main content

The Shortest Signatures Ever

  • Conference paper
  • First Online:
Progress in Cryptology – INDOCRYPT 2016 (INDOCRYPT 2016)

Part of the book series: Lecture Notes in Computer Science ((LNSC,volume 10095))

Included in the following conference series:

Abstract

Multivariate Cryptography is one of the main candidates for creating post quantum public key cryptosystems. Especially in the area of digital signatures, there exist many practical and secure multivariate schemes. In this paper we present a general technique to reduce the signature size of multivariate schemes. Our technique enables us to reduce the signature size of nearly all multivariate signature schemes by 10 to 15% without slowing down the scheme significantly. We can prove that the security of the underlying scheme is not weakened by this modification. Furthermore, the technique enables a further reduction of the signature size when accepting a slightly more costly verification process. This trade off between signature size and complexity of the verification process can not be observed for any other class of digital signature schemes. By applying our technique to the Gui signature scheme, we obtain the shortest signatures of all existing digital signature schemes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bernstein, D.J., Buchmann, J., Dahmen, E. (eds.): Post Quantum Cryptography. Springer, Heidelberg (2009)

    MATH  Google Scholar 

  2. Bogdanov, A., Eisenbarth, T., Rupp, A., Wolf, C.: Time-area optimized public-key engines: \(\cal{MQ}\)-cryptosystems as replacement for elliptic curves? In: Oswald, E., Rohatgi, P. (eds.) CHES 2008. LNCS, vol. 5154, pp. 45–61. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85053-3_4

    Chapter  Google Scholar 

  3. Chen, A.I.-T., Chen, M.-S., Chen, T.-R., Cheng, C.-M., Ding, J., Kuo, E.L.-H., Lee, F.Y.-S., Yang, B.-Y.: SSE implementation of multivariate PKCs on modern x86 CPUs. In: Clavier, C., Gaj, K. (eds.) CHES 2009. LNCS, vol. 5747, pp. 33–48. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04138-9_3

    Chapter  Google Scholar 

  4. Courtois, N., Klimov, A., Patarin, J., Shamir, A.: Efficient algorithms for solving overdefined systems of multivariate polynomial equations. In: Preneel, B. (ed.) EUROCRYPT 2000. LNCS, vol. 1807, pp. 392–407. Springer, Heidelberg (2000). doi:10.1007/3-540-45539-6_27

    Chapter  Google Scholar 

  5. Ding, J., Gower, J.E., Schmidt, D.S.: Multivariate Public Key Cryptosystems. Advances in Information Security, vol. 25. Springer, New York (2006). doi:10.1007/978-0-387-36946-4

    MATH  Google Scholar 

  6. Ding, J., Schmidt, D.: Rainbow, a new multivariable polynomial signature scheme. In: Ioannidis, J., Keromytis, A., Yung, M. (eds.) ACNS 2005. LNCS, vol. 3531, pp. 164–175. Springer, Heidelberg (2005). doi:10.1007/11496137_12

    Chapter  Google Scholar 

  7. Faugère, J.C.: A new efficient algorithm for computing Gröbner bases (F4). J. Pure Appl. Algebra 139, 61–88 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  8. Garey, M.R., Johnson, D.S.: Computers and Intractability: A Guide to the Theory of NP-Completeness. W.H. Freeman and Company, San Francisco (1979)

    MATH  Google Scholar 

  9. Güneysu, T., Lyubashevsky, V., Pöppelmann, T.: Practical lattice-based cryptography: a signature scheme for embedded systems. In: Prouff, E., Schaumont, P. (eds.) CHES 2012. LNCS, vol. 7428, pp. 530–547. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33027-8_31

    Chapter  Google Scholar 

  10. Kravitz, D.: Digital signature algorithm. US Patent 5231668, July 1991

    Google Scholar 

  11. Kipnis, A., Patarin, J., Goubin, L.: Unbalanced oil and vinegar signature schemes. In: Stern, J. (ed.) EUROCRYPT 1999. LNCS, vol. 1592, pp. 206–222. Springer, Heidelberg (1999). doi:10.1007/3-540-48910-X_15

    Google Scholar 

  12. Matsumoto, T., Imai, H.: Public quadratic polynomial-tuples for efficient signature-verification and message-encryption. In: Barstow, D., Brauer, W., Brinch Hansen, P., Gries, D., Luckham, D., Moler, C., Pnueli, A., Seegmüller, G., Stoer, J., Wirth, N., Günther, C.G. (eds.) EUROCRYPT 1988. LNCS, vol. 330, pp. 419–453. Springer, Heidelberg (1988). doi:10.1007/3-540-45961-8_39

    Google Scholar 

  13. Goodin, D.: NSA preps quantum-resistant algorithms to head off cryptoapocalypse. http://arstechnica.com/security/2015/08/nsa-preps-quantumresistant-algorithms-to-head-o-crypto-apocolypse/

  14. National Institute of Standards and Technology: Report on Post Quantum Cryptography. NISTIR draft 8105, http://csrc.nist.gov/publications/drafts/nistir-8105/nistir_8105_draft.pdf

  15. Patarin, J.: Hidden fields equations (HFE) and isomorphisms of polynomials (IP): two new families of asymmetric algorithms. In: Maurer, U. (ed.) EUROCRYPT 1996. LNCS, vol. 1070, pp. 33–48. Springer, Heidelberg (1996). doi:10.1007/3-540-68339-9_4

    Google Scholar 

  16. Patarin, J., Courtois, N., Goubin, L.: FLASH, a fast multivariate signature algorithm. In: Naccache, D. (ed.) CT-RSA 2001. LNCS, vol. 2020, pp. 298–307. Springer, Heidelberg (2001). doi:10.1007/3-540-45353-9_22

    Chapter  Google Scholar 

  17. Petzoldt, A., Chen, M.-S., Yang, B.-Y., Tao, C., Ding, J.: Design principles for HFEv- based multivariate signature schemes. In: Iwata, T., Cheon, J.H. (eds.) ASIACRYPT 2015. LNCS, vol. 9452, pp. 311–334. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48797-6_14

    Chapter  Google Scholar 

  18. Rivest, R.L., Shamir, A., Adleman, L.: A method for obtaining digital signatures and public-key cryptosystems. Commun. ACM 21(2), 120–126 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  19. Shor, P.: Polynomial-time algorithms for prime factorization and discrete logarithms on a quantum computer. SIAM J. Comput. 26(5), 1484–1509 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  20. Tao, C., Diene, A., Tang, S., Ding, J.: Simple matrix scheme for encryption. In: Gaborit, P. (ed.) PQCrypto 2013. LNCS, vol. 7932, pp. 231–242. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38616-9_16

    Chapter  Google Scholar 

  21. Yang, B.-Y., Chen, J.-M.: Building secure tame-like multivariate public-key cryptosystems: the new TTS. In: Boyd, C., González Nieto, J.M. (eds.) ACISP 2005. LNCS, vol. 3574, pp. 518–531. Springer, Heidelberg (2005). doi:10.1007/11506157_43

    Chapter  Google Scholar 

Download references

Acknowledgments

The first and the second authors are supported by the EU-project PQCRYPTO ICT-645622 and JSPS KAKENHI 15F15350 respectively.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Saied Emam Mohamed .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Mohamed, M.S.E., Petzoldt, A. (2016). The Shortest Signatures Ever. In: Dunkelman, O., Sanadhya, S. (eds) Progress in Cryptology – INDOCRYPT 2016. INDOCRYPT 2016. Lecture Notes in Computer Science(), vol 10095. Springer, Cham. https://doi.org/10.1007/978-3-319-49890-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49890-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49889-8

  • Online ISBN: 978-3-319-49890-4

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics