Skip to main content

Using hStreams Programming Library for Accelerating a Real-Life Application on Intel MIC

  • Conference paper
  • First Online:
Algorithms and Architectures for Parallel Processing (ICA3PP 2016)

Abstract

The main goal of this paper is the suitability assessment of the hStreams programming library for porting a real-life scientific application to heterogeneous platforms with Intel Xeon Phi coprocessors. This emerging library offers a higher level of abstraction to provide effective concurrency among tasks, and control over the overall performance. In our study, we focus on applying the FIFO streaming model for a parallel application which implements the numerical model of alloy solidification. In the paper, we show how scientific applications can benefit from multiple streams. To take full advantages of hStreams, we propose a decomposition of the studied application that allows us to distribute tasks belonging to the computational core of the application among two logical streams within two logical/physical domains. Effective overlapping computations with data transfers is another goal achieved in this way. The proposed approach allows us to execute the whole application 3.5 times faster than the original parallel version running on two CPUs.

This research was conducted with the financial support of National Science Centre grant no. UMO-2011/03/B/ST6/03500. The authors are grateful to the Czestochowa University of Technology for granting access to Intel Xeon Phi coprocessors provided by the MICLAB project no. POIG.02.03.00.24-093/13.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Newburn, C.J., et al.: Heterogeneous streaming. In: IPDPSW, AsHES (2016)

    Google Scholar 

  2. Jeffers, J., Reinders, J.: Fast matrix computations on heterogeneous streams. In: Jeffers, J., Reinders, J. (eds.), High Performance Parallelism Pearls: Multicore and Many-core Programming Approaches, vol. 2, pp. 49–52. Morgan Kaufmann (2015)

    Google Scholar 

  3. Li, Z., et al.: Evaluating the Performance Impact of Multiple Streams on the MIC-based Heterogeneous Platform (2016). arXiv preprint arXiv:1603.08619

  4. Szustak, L., Rojek, K., Olas, T., Kuczynski, L., Halbiniak, K., Gepner, P.: Adaptation of MPDATA heterogeneous stencil computation to Intel Xeon Phi coprocessor. Sci. Program. (2015). http://dx.doi.org/10.1155/2015/642705

  5. Szustak, L., Halbiniak, K., Kuczynski, L., Wrobel, J., Kulawik, A.: Porting, optimization of solidification application for CPU-MIC hybrid platforms. Accepted to print: Int. J. High Perform. Comput. Appl., 13 (2016)

    Google Scholar 

  6. Rojek, K., et al.: Adaptation of fluid model EULAG to graphics processing unit architecture. Concurrency Computations Pract. Experience 27(4), 937–957 (2015)

    Article  Google Scholar 

  7. Szustak, L., Halbiniak, K., Kulawik, A., Wrobel, J., Gepner, P.: Toward parallel modeling of solidification based on the generalized finite difference method using intel xeon phi. In: Wyrzykowski, R., Deelman, E., Dongarra, J., Karczewski, K., Kitowski, J., Wiatr, K. (eds.) PPAM 2015. LNCS, vol. 9573, pp. 411–422. Springer, Heidelberg (2016). doi:10.1007/978-3-319-32149-3_39

    Chapter  Google Scholar 

  8. OpenMP Application Programming Interface (2015)

    Google Scholar 

  9. Steinbach, I.: Phase-field models in materials science. Model. Simul. Mater. Sci. Eng. 17(7), 73001 (2009)

    Article  MathSciNet  Google Scholar 

  10. Provatas, N., Elder, K.: Phase-Field Methods in Materials Science and Engineering. Wiley, New York (2010)

    Book  Google Scholar 

  11. Folch, R., Casademunt, J., Hernandez-Machado, A., Ramirez-Piscina, L.: Phase-field model for Hele-Shaw flows with arbitrary viscosity contrast. II. Numer. Study. Phys. Rev. E 60(2), 1734–1740 (1999)

    Article  Google Scholar 

  12. Karma, A., Kessler, D., Levine, H.: Phase-field model of mode III dynamic fracture. Phys. Rev. Lett. 87(4), 40401 (2001)

    Article  Google Scholar 

  13. Takaki, T.: Phase-field modeling and simulations of dendrite growth. ISIJ Int. 54(2), 437–444 (2014)

    Article  Google Scholar 

  14. Warren, J.A., Boettinger, W.J.: Prediction of dendritic growth and microsegregation patterns in a binary alloy using the phase-field method. Acta Metall. et Mater. 43(2), 689–703 (1995)

    Article  Google Scholar 

  15. Longinova, T., Amberg, G., Ågren, J.: Phase-field simulations of non-isothermal binary alloy solidification. Acta Mater. 49(4), 573–581 (2001)

    Article  Google Scholar 

  16. Pilot Laboratory of Massively Parallel Systems (MICLab). http://miclab.pl

  17. Michael Klemm. Heterogeneous Programming with OpenMP 4.5. https://www.scc.kit.edu/downloads/sca/Heterogeneous%20Programming%20with%20OpenMP%204.5.pdf

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kamil Halbiniak .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Szustak, L., Halbiniak, K., Kulawik, A., Wyrzykowski, R., Uminski, P., Sasinowski, M. (2016). Using hStreams Programming Library for Accelerating a Real-Life Application on Intel MIC. In: Carretero, J., et al. Algorithms and Architectures for Parallel Processing. ICA3PP 2016. Lecture Notes in Computer Science(), vol 10049. Springer, Cham. https://doi.org/10.1007/978-3-319-49956-7_30

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-49956-7_30

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-49955-0

  • Online ISBN: 978-3-319-49956-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics