Abstract
This paper is a survey of results together with a list of open questions on \(\Sigma \)–definability of structures over \(\mathbb {HF}(\mathbb {R})\), the hereditarily finite superstructure over the ordered field of the real numbers.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Morozov, A.S., Korovina, M.V.: On \(\Sigma \)-definability of countable structures over real numbers, complex numbers, and quaternions. Algebra Logic 47(3), 193–209 (2008)
Barwise, J.: Admissible Sets and Structures. Springer, Heidelberg (1975)
Ershov, Y.L.: Definability and Computability. Plenum Publ. Co., New York (1996)
Ershov, Y.L.: \(\Sigma \)-definability of algebraic structures. In: Studies in Logic and Foundations of Mathematics, vol. 1, pp. 235–260. Elsevier, Amsterdam (1998)
Korovina, M.V.: Generalized computability of functions on the reals. Vychislitel’nye Systemi (Computing Systems) 133, 38–68 (1990). In Russian
Morozov, A.S.: On some presentations of the real number field. Algebra Logic 51(1), 66–88 (2012)
Morozov, A.S.: On \(\Sigma \)-rigid presentations of the real order. Siberian Math. J. 55(3), 562–572 (2014)
Morozov, A.S.: One-dimensional \(\Sigma \)-presentations of structures over \(\mathbb{HF}{\mathbb{R}}\). In: Geschke, P.S.S., Löwe, B. (eds.) Infinity, Computability, and Metamathematics, Festschrift celebrating the 60th birthdays of Peter Koepke and Philip Welch. Tributes Series, vol. 23, pp. 285–298. College Publications, London (2014)
Morozov, A.S.: \(\Sigma \)-presentations of the ordering on the reals. Algebra Logic 53(3), 217–237 (2014)
Morozov, A.S.: A sufficient condition for nonpresentability of structures in hereditarily finite superstructures. Algebra Logic 55, 242–251 (2016)
Morozov, A.S.: Nonpresentability of some structures of analysis in hereditarily finite superstructures. Algebra Logic (2017, to appear)
Korovina, M.V., Kudinov, O.V.: Positive predicate structures for continuous data. Math. Struct. Comput. Sci. 25(Special Issue 08), 1669–1684 (2015)
Ershov, Y.L., Goncharov, S.S.: Constructive Models. Siberian School of Algebra and Logic. Kluwer Academic/Plenum, New York (2000)
Tarski, A.: A Decision Method for Elementary Algebra and Geometry. The Rand Corporation, Santa Monica (1957)
Weihrauch, K.: Computable Analysis. An Introduction, p. 285. Springer, Heidelberg (2000)
Ershov, Y.L., Puzarenko, V.G., Stukachev, A.I.: \(\mathbb{HF}\)-Computability. In: Cooper, S.B., Andrea, S. (eds.) Computability in Context. Computation and Logic in the Real World, pp. 169–242. Imperial College Press, London (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this chapter
Cite this chapter
Morozov, A.S. (2017). Computable Model Theory over the Reals. In: Day, A., Fellows, M., Greenberg, N., Khoussainov, B., Melnikov, A., Rosamond, F. (eds) Computability and Complexity. Lecture Notes in Computer Science(), vol 10010. Springer, Cham. https://doi.org/10.1007/978-3-319-50062-1_22
Download citation
DOI: https://doi.org/10.1007/978-3-319-50062-1_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-50061-4
Online ISBN: 978-3-319-50062-1
eBook Packages: Computer ScienceComputer Science (R0)