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Permutations of the integers induce only the

trivial automorphism of the Turing degrees
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Abstract

Let π be an automorphism of the Turing degrees induces by a home-

omorphism ϕ of the Cantor space 2ω such that ϕ preserves all Bernoulli

measures. It is proved that π must be trivial. In particular, a permutation

of ω can only induce the trivial automorphism of the Turing degrees.
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1 Introduction

Let DT denote the set of Turing degrees and let ≤ denote its ordering. This
article gives a partial answer to the following famous question.

Question 1. Does there exist a nontrivial automorphism of DT?

Definition 1. A bijection π : DT → DT is an automorphism of DT if for all
x,y ∈ DT, x ≤ y iff π(x) ≤ π(y). If moreover there exists an x with π(x) 6= x

then π is nontrivial.

Question 1 has a long history. Already in 1977, Jockusch and Solovay [3]
showed that each jump-preserving automorphism of the Turing degrees is the
identity above 0(4). Nerode and Shore 1980 [8] showed that each automorphism
(not necessarily jump-preserving) is equal to the identity on some cone. Slaman
and Woodin [11] showed that each automorphism is equal to the identity on the
cone above 0′′.

Haught and Slaman [2] used permutations of the integers to obtain auto-
morphisms of the polynomial-time Turing degrees in an ideal (below a fixed
set).

Theorem 2 (Haught and Slaman [2]). There is a permutation of 2<ω, or equiv-
alently of ω, that induces a nontrivial automorphism of

(PTIME
A,≤pT).

for some A.

Our result can be seen as a contrast to the following work of Kent.

Definition 3. A ⊂ ω is cohesive if for each recursively enumerable set We,
either A ∩We is finite or A ∩ (ω \We) is finite.

Theorem 4 (Kent [9, Theorem 12.3.IX], [4, 5]). There exists a permutation f
such that

(i) for all recursively enumerable B, f(B) and f−1(B) are recursively enu-
merable (and hence for all recursive A, f(A) and f−1(A) are recursive);

(ii) f is not recursive.

Proof. Kent’s permutation is just any permutation of a cohesive set (and the
identity off the cohesive set).

2 Universal algebra setup

Definition 5. The pullback of f : ω → ω is f∗ : ωω → ωω given by

f∗(A)(n) = A(f(n)).

2



We often write F = f∗. Given a set S ⊆ ω let DS = Sω/ ≡T. Thus the elements
of DS are of the form

[g]S = { h ∈ Sω | h ≡T g }, g ∈ Sω.

Given F : Sω → Sω, let FS : DS → DS be defined by

FS([A]S) = [F (A)]S .

If F = f∗
S then we say that FS and F are both induced by f .

Lemma 6. For each f : ω → ω and each S ⊆ ω, the pullback f∗ maps Sω into
Sω.

Proof.
A ∈ Sω, n ∈ ω =⇒ f∗(A)(n) = A(f(n)) ∈ S.

In light of Lemma 6, we can define:

Definition 7. f∗
S : DS → DS is the map given by

f∗
S([g]S) = [f∗(g)]S .

For S ⊆ ω (with particular attention to S ∈ {2, ω}), let

DS = Sω/ ≡T .

Our main result concerns D2; the corresponding result for Dω is much easier:

Theorem 8. Let f : ω → ω be a bijection and let f∗ be its pullback. If f∗
S is an

automorphism of DS for some infinite computable set S, then f is computable.

Proof. Let η : ω → S be a computable bijection between ω and S. Then for all
x ∈ ω,

f∗(η ◦ f−1)(x) = (η ◦ f−1)(f(x)) = η(f−1(f(x))) = η(x).

Since η ∈ Sω is computable and f∗
S is an automorphism, η ◦ f−1 ∈ Sω must be

computable. Hence f is computable.

3 Permutations preserve randomness

Theorem 9. If B is f -µp-random, F = f∗ and A = F (B) or A = F−1(B),
then A is f -µp-random.

Proof. First note that f−1-µp-randomness is the same as f -µp-randomness since
f ≡T f−1. Thus the result for A = F−1(B) follows from the result for A =
F (B). So suppose A = F (B) and A is not f -µp-random. So A ∈ ∩nUn where
{Un}n is an f -µp-ML test. Then

B ∈ {X | F (X) ∈ ∩nUn} = ∩nVn
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where
Vn = {X | F (X) ∈ Un} = F−1(Un)

We claim that Vn is Σ0
1(f) (uniformly in n) and µp(Vn) = µp(Un). Write

Un = ∪k[σk] where the strings σk are all incomparable. Then

Vn = ∪kF
−1([σk])

and
µp[σk] = µpF

−1([σk])

and the F−1([σk]), k ∈ ω are still disjoint and clopen. (If we think of σ ∈ 2<ω

as a partial function from ω to 2 then

F−1([σ]) = {X | F (X) ∈ [σ]}

= {X | X(f(n)) = σ(n), n < |σ|} = [{〈f(n), σ(n)〉 | n < |σ|}].)

Thus {Vn}n is another f -µp-ML test, and so B is not f -µp-random, which
completes the proof.

Theorem 10. µp({A : A ≥T p}) = 1, in fact if A is µp-ML-random then A
computes p.

Proof. Kjos-Hanssen [6] showed that each Hippocratic µp-random set computes
p. In particular, each µp-random set computes p.

4 Cones have small measure

Definition 11 (Bernoulli measures). For each n ∈ ω,

µp({X ∈ 2ω : X(n) = 1}) = p

and X(0), X(1), X(2), . . . are mutually independent random variables.

Definition 12. An ultrametric space is a metric space with metric d satisfying
the strong triangle inequality

d(x, y) ≤ max{d(x, z), d(z, y)}.

Definition 13. A Polish space is a separable completely metrizable topological
space.

Definition 14. In a metric space, B(x, ε) = {y : d(x, y) < ε}.

Theorem 15 ([7, Proposition 2.10]). Suppose that X is a Polish ultrametric
space, µ is a probability measure on X, and A ⊆ X is Borel. Then

lim
ε→0

µ(A ∩B(x, ε))

µ(B(x, ε))
= 1

for µ-almost every x ∈ A.
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Definition 16. For any measure µ define the conditional measure by

µ(A | B) =
µ(A ∩ B)

µ(B)
.

A measurable set A has density d at X if

lim
n

µp(A | [X ↾ n]) = d.

Let Ξ(A) = {X : A has density 1 at X}.

Theorem 17 (Lebesgue Density Theorem for µp). For Cantor space with
Bernoulli(p) product measure µp, the Lebesgue Density Theorem holds:

lim
n→∞

µp(A ∩ [x ↾ n])

µp([x ↾ n])
= 1

for µ-almost every x ∈ A.
If A is measurable then so is Ξ(A). Furthermore, the measure of the sym-

metric difference of A and Ξ(A) is zero, so µ(Ξ(A)) = µ(A).

Proof. Consider the ultrametric d(x, y) = 2−min{n:x(n) 6=y(n)}. It induces the
standard topology on 2ω. Apply Theorem 15.

Sacks [10] and de Leeuw, Moore, Shannon, and Shapiro [1] showed that each
cone in the Turing degrees has measure zero. Here we use Theorem 17 to extend
this to µp.

Theorem 18. If µp({X : WX
e = A}) > 0 then A is c.e. in p.

Proof. Suppose µp({X : WX
e = A}) > 0. Then S := {X | WX

e = A} has
positive measure, so Ξ(S) has positive measure, and hence by Theorem 15 there
is an X such that S has density 1 at X . Thus, there is an n such that µp(S |
[X ↾ n]) > 1

2 . Let σ = X ↾ n. We can now enumerate A using p by taking a
“vote” among the sets extending σ. More precisely, n ∈ A iff

µp({Y : σ ≺ Y ∧ n ∈ WY
e }) >

1

2
,

and the set of n for which this holds is clearly c.e. in p.

Theorem 19. Each cone strictly above p has µp-measure zero:

µp({A : A ≥T q}) = 1 =⇒ q ≤T p.

Proof. If A can compute q then A can enumerate both q and the complement of
q. Hence by Theorem 18, q is both c.e. in p and co-c.e. in p; hence q ≤T p.
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5 Main result

We are now ready to prove our main result Theorem 20 that no nontrivial
automorphism of the Turing degrees is induced by a permutation of ω.

Theorem 20. If π is an automorphism of D2 which is induced by a permutation
of ω then π(p) = p for each p ∈ DT.

Proof. Fix a permutation f : ω → ω and let F = f∗ ↾ 2ω. Let B be f -µp-
random. We claim that B computes F (p).

By Theorem 10, for any f -µp random A, we have p ≤T A, hence F (p) ≤T

F (A). So it suffices to represent B as F (A).
Now B = F (F−1(B)). Let A = F−1(B). By Theorem 9, A is f -µp-random.

Thus every f -µp-random computes F (p).
Thus we have completed the proof of our claim that µp-almost every real

computes F (p).
By Theorem 19 it follows that F (p) ≤T p.
By considering the inverse f−1 we also obtain F−1(p) ≤T p and hence p ≤T

F (p). So F (p) ≡T p and F induces the identity automorphism.

6 Computing the permutation

Theorem 21. Let f : ω → ω be a permutation. Let F = f∗ be its pullback
(Definition 5) to 2ω. If for positive Lebesgue measure many G, F (G) ≤T G,
then f is recursive.

Proof. By the Lebesgue Density Theorem we can get a Φ and a σ such that, if
µσ denotes conditional probability on σ and E = {A : F (A) = ΦA}, then

µσ(E) ≥ 95%.

For simplicity let us write pn(A) = A+n = A∪{n} andmn(A) = A−n = A\{n}.
Then p−1

n E = {A : pn(A) ∈ E}. Note that

E ⊆ p−1
n (E) ∪m−1

n (E)

and
Ec ⊆ p−1

n (Ec) ∪m−1
n (Ec)

Then

µσ(E) ≤ µσ(p
−1
n (E) ∪m−1

n (E)) ≤ µσ(p
−1
n (E)) + µσ(m

−1
n (E))

We now have
µσ{A : F (A+ n) = ΦA+n} ≥ 90%

and
µσ{A : F (A− n) = ΦA−n} ≥ 90%;
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Indeed, the events m−1
n (A), p−1

n (A) are each independent of the event n ∈ A,
so for n > |σ|,

95% ≤ µσ(E) = µσ(p
−1
n (E) | n ∈ A)µσ(n ∈ A) + µσ(p

−1
n (E) | n /∈ A)µσ(n /∈ A)

=
1

2

(

µσ(p
−1
n (E) | n ∈ A) + µσ(m

−1
n (E) | n /∈ A)

)

=
1

2

(

µσ(p
−1
n (E)) + µσ(m

−1
n (E))

)

which gives

1.9 ≤ µσ(p
−1
n (E)) + µσ(m

−1
n (E)) ≤ 1 + min{µσ(p

−1
n (E)), µσ(m

−1
n (E))}.

Also F (A − n) and F (A + n) differ in exactly one bit, namely f−1(n), for
all A:

F (A− n)(b) 6= F (A+ n)(b) ⇐⇒ (A− n)(f(b)) 6= (A+ n)(f(b))

⇐⇒ n = f(b) ⇐⇒ b = f−1(n),

that is

{A : (∀b)(F (A+ n)(b) 6= F (A− n)(b) ↔ b = f−1(n))} = 2ω.

Let Dn,b = {A : ΦA+n(b) ↓6= ΦA−n(b) ↓}. For n > |σ|,

µσ



Dn,f−1(n) \
⋃

b6=f−1(n)

Dn,b



 = µσ{A : (∀b)(A ∈ Dn,b ↔ b = f−1(n))} ≥ 80%

since
µσ{A : ¬(∀b)(A ∈ Dn,b ↔ b = f−1(n))}

≤ µσ(¬p
−1
n (E)) + µσ(¬m

−1
n (E)) ≤ 10%+ 10% = 20%.

Therefore, given any n, we can compute f−1(n): enumerate computations
until we have found some bit b such that

µσDn,b ≥ 80%.

Then b = f−1(n).
Thus f−1 is computable and hence so is f .

Theorem 22. If π is an automorphism of DT which is induced by a permutation
f of ω then f is recursive.

Proof. By Theorem 20, f∗(G) ≡T G for each G ∈ 2ω. By Theorem 21, f is
recursive.
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7 Measure-preserving homeomorphisms of the

Cantor set

Proposition 23. A permutation of ω induces a homeomorphism of 2ω that is
µp-preserving for each p.

Proposition 24. There exist homeomorphisms of 2ω that are µp-preserving for
each p, but are not induced by a permutation.

Proof. Map
[1] 7→ [111] ∪ [001] ∪ [101] ∪ [110]

(more generally, any collection of cylinders of strings of length 3 including 2
strings of Hamming weight 2 and 1 of Hamming weight 1).

Another way to express this is that the homeomorphism preserves the frac-
tion of 1s in a certain sense.

More precisely,

100 7→ 001,

101 7→ 101,

110 7→ 110,

111 7→ 111.

Theorem 25. Suppose ϕ is a homeomorphism of 2ω which is µp-preserving for
all p (it suffices to require this for infinitely many p, or for a single transcen-
dental p). Suppose ϕ induces an automorphism π of the Turing degrees. Then
π = id.

We omit the proof which follows along the same lines as before.
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