
Crossing Minimization in Storyline Visualization

Martin Gronemann1, Michael Jünger1, Frauke Liers2, Francesco Mambelli1

1 Department of Computer Science, University of Cologne
{gronemann,mjuenger,mambelli}@informatik.uni-koeln.de

2 Department of Mathematics, University of Erlangen-Nürnberg
frauke.liers@math.uni-erlangen.de

Abstract. A storyline visualization is a layout that represents the tem-
poral dynamics of social interactions along time by the convergence of
chronological lines. Among the criteria oriented at improving aesthetics
and legibility of a representation of this type, a small number of line
crossings is the hardest to achieve. We model the crossing minimization
in the storyline visualization problem as a multi-layer crossing minimiza-
tion problem with tree constraints. Our algorithm can compute a layout
with the minimum number of crossings of the chronological lines. Com-
putational results demonstrate that it can solve instances with more than
100 interactions and with more than 100 chronological lines to optimality.

1 Introduction

Visualizing time-varying relationships between entities using converging and di-
verging curves on a timeline has received a considerable amount of interest re-
cently. The ability to display interactions among entities, while at the same time
being able to put these in a chronological context has found applications beyond
its initial purpose which coined its name. Munroe [26] introduced the storyline
visualization as hand-drawn illustrations in xkcd’s “Movie Narrative Charts”,
where lines represent the characters of various popular movies and the scenes are
ordered chronologically and represented by bundling the lines of the correspond-
ing characters. This concept has been used to visualize various spatiotemporal
data, like communities in time-varying graphs [25,33], software projects [28],
topic analysis [9], etc.

However, hand crafted or semi-automated methods are limited in their ap-
plicability in a world of ever growing datasets. In order to obtain a storyline
visualization automatically, Tanahashi and Ma [32] discuss various aspects of a
well-designed storyline visualization and present an evolutionary algorithm that
incorporates these in its objective function. They identify three important crite-
ria that one usually wants to optimize: line crossings, whose number should be
small, line wiggles, that should be avoided by drawing every chronological line as
straight as possible, and space efficiency. Based on these aspects, Liu et al. [24]
describe a technique which further improves the layout and runs significantly
faster compared to the evolutionary algorithm in [32]. Being able to create sto-
ryline visualizations of bigger instances, Tanahashi et al. [31] take this one step
further and show how to create storyline visualizations from streaming data.

ar
X

iv
:1

60
8.

08
02

7v
1

 [
cs

.D
S]

 2
9

A
ug

 2
01

6

In this paper, we study the crossing minimization problem in storyline visual-
ization from a combinatorial optimization point of view. While most approaches
tackle this problem with heuristics, Kostitsyna et al. [22] recently shed some
light onto its combinatorial properties. Besides noting that the decision problem
is NP-complete (by reduction from bipartite crossing number), they provide a
lower bound for the number of crossings in a restricted variant of the problem
and show that the general problem is fixed-parameter tractable in the number
of characters. But a straightforward implementation of the algorithm is imprac-
tical, even for a small number of characters.

However, the problem is also similar to a few already well-studied problems
in graph-drawing. It may seem that the problem is related to a special case of
metro-line crossing minimization, in particular, the so called two-sided models
in which metro-lines run only from left to right [5,12]. However, all metro-line
crossing minimization problems have in common that they are defined on a rail
network whose embedding is fixed due to its geographical context. This difference
makes a straightforward transformation difficult.

As already observed by Kostitsyna et al. [22], storyline crossing minimization
has a strong relationship to multi-layer crossing minimization (MLCM). Here
each node of the graph is assigned to one of the layers (parallel straight lines) in
such a way that each edge connects two vertices on consecutive layers. The aim is
to find an ordering of the nodes on every layer such that the total number of edge
crossings is minimized. Although the corresponding planarity testing problem is
linear-time solvable [19], the MLCM problem itself remains NP-hard even when
restricted to two layers [13]. This led to the development of various heuristics,
but also to exact approaches [6,8,16,18].

In order to exploit existing techniques for solving MLCM instances, a straight-
forward transformation can be sketched as follows. We represent the characters
as paths in an MLCM instance, in which the layers mark important points in
time, e.g., a new bundle has to be created. Of course, a bundle of lines (paths)
requires the corresponding vertices to be consecutive on the layer, a constraint
which is problematic in the general MLCM setting.

But we can borrow ideas from another crossing minimization problem type,
the so called tanglegrams. The general tanglegram problem consists of two trees
and a set of edges connecting the leaves of one tree with the leaves of the other,
i.e., the leaves and the connecting edges form a bipartite graph. The objective
is essentially to perform a bipartite (or two-layer) crossing minimization with
the additional constraint that leaves of the same subtree appear consecutively
on the layers. However, when consulting the literature on tanglegrams, attention
must be paid to the details. Some definitions require the trees to be binary, while
others restrict the edge set to be a perfect matching, or both [7,11,27]. Since the
focus of the paper is not on tanglegrams, we restrict ourselves to the general
case. Here two works are of interest, Baumann et al. [4] describe an ILP-based
approach, whereas Wotzlaw et al. [34] employ a SAT-formulation. However, not
only the techniques differ, in [4] only two layers are considered, whereas the SAT

2

approach in [34] works on multiple layers but requires that the tree constraints
are k-ary with k > 1 fixed.

The related problem of testing level planarity under tree constraints is dis-
cussed by Angelini et al. [1]. They show that if edges are restricted to run between
consecutive layers, then the problem can be solved in quadratic time, whereas if
this restriction does not hold, the problem is NP-complete.

In this paper we solely focus on the crossing minimization problem in sto-
ryline visualization. Therefore, we neglect other design aspects and restrict our-
selves to the combinatorial problem, i.e., determining an ordering of the lines
such that the number of crossings is minimum. We model this problem as a spe-
cial variant of the MLCM problem under tree constraints and provide an ILP
formulation for it. Computational results show that we are able to solve instances
of moderate size to optimality within a few seconds. Moreover, we provide solu-
tions for storyline instances from the literature, some of which have been solved
to optimality for the first time. These are of particular value, since they offer a
reference when comparing the crossing minimization performance of heuristics.

2 Modelling Storyline Visualization as Multi-Layer
Crossing Minimization with Tree Constraints

We begin with a formal definition of the multi-layer crossing minimization prob-
lem with tree constraints (MLCM-TC). The input for MLCM-TC consists of a
graph G = (V,E, T), where the set of the nodes V =

⋃p
r=1 Vr is partitioned into

p different layers. E =
⋃p−1
r=1 Er is the set of the edges such that Er ⊆ Vr × Vr+1

for every r ∈ {1, 2, . . . , p − 1}, i.e., each edge of Er has one end in Vr and the
other in Vr+1. T = {Tr | r = 1, 2, . . . , p} is a family of rooted trees with at least
one internal node (root node), whose leaves are exactly the nodes of Vr. In the
following, whenever we consider a graph, we implicitly assume that it is of this
type, which is known in the literature as “(proper) T -level graph” [1].

Given an instance G = (V,E, T) of MLCM-TC, the task is to determine, for
each layer r ∈ {1, 2, . . . , p}, permutations πr = 〈v1, v2, . . . , v|Vr|〉 of the nodes in
Vr such that for each internal node τ of Tr, all t leaves in the subtree rooted at
τ are adjacent in πr, i.e., they form a sub-permutation 〈vi, vi+1, . . . , vi+t−1〉 for
some i ∈ {1, 2, . . . , |Vr| − t+ 1}.

An easy reduction of the NP-hard MLCM problem to the MLCM-TC prob-
lem (add a trivial tree with the root as the only internal node to each layer) shows
that MLCM-TC is NP-hard. This justifies the usage of integer programming
techniques in the next section. Now we give a formal description of the storyline
visualization problem in order to support our hypothesis that MLCM-TC cap-
tures its core when the criteria “line wiggle avoidance” and “space efficiency” are
neglected in favour of crossing minimization. A story consists of a set of charac-
ters C = {c1, c2, . . . , cn} and a set of scenes S ⊆ 2C . For each scene s ∈ S, bs and
es are the points in time when s begins and ends, respectively. The time intervals
[bs1 , es1] and [bs2 , es2] of two distinct scenes s1 and s2 may have a non-empty
intersection, but if they do, we require s1 ∩ s2 = ∅.

3

c1
c2

c3

c4s1 = {c1, c2}

s2 = {c2, c3}

s3 = {c1, c4}
s4 = {c1, c3, c4}

bs1 es1 bs2 bs3 es2 es3 bs4 es4

Fig. 1. An example of a story with four scenes and four characters, where characters c3
and c4 enter late, character c2 leaves early, and the time intervals [bs2 , es2] and [bs3 , es3]
have a non-empty intersection.

The storyline visualization problem requires depicting each character c ∈ C
by a curve in the Euclidean plane that is strictly monotone on the time axis that
we arbitrarily fix to the horizontal x-axis. The curve begins at the x-coordinate
xbc = min{bs | c ∈ s} and ends at xec = max{es | c ∈ s}. We call the interval
[xbc, x

e
c] the lifespan of character c.

The curves must be such that for every scene s = {cσ1
, cσ2

, . . . , cσk} ∈ S the
k corresponding curves in the interval [bs, es] are horizontal parallel lines that
are equally spaced with vertical distance 1. Furthermore, the curves of all c 6∈ s
are restricted to y-coordinates that have an absolute difference of at least 2 to
the y-coordinates of the curves cσi ∈ s in the interval [bs, es], and to all curves
for characters that are not members of any scene that intersects with [bs, es]. An
example is given in Fig. 1.

Given a story (C, S, {[bs, es] | s ∈ S}), we construct an MLCM-TC instance
G = (V,E, T) as follows:

1. Sort the points in time {bs | s ∈ S} ∪ {es | s ∈ S} in non-decreasing order,
and let 〈t1, t2, . . . , tp〉 be the sorted sequence.

2. Associate a layer Vr with each tr (r ∈ {1, 2, . . . , p}), create a node vc,r for
each character c for which tr is within its lifespan, i.e., for which tr ∈ [xbc, x

e
c],

and let Vr = {vc,r | tr ∈ [xbc, x
e
c]}.

3. Let V =
⋃p
r=1 Vr.

4. Let E =
{
{vc,r, vc,r+1} for all c ∈ C such that tr, tr+1 ∈ [xbc, x

e
c]
}
.

5. For each layer Vr create a tree Tr as follows:
i. For each scene s = {cσ1 , cσ2 , . . . , cσk} such that tr ∈ [bs, es] create an

internal tree node vs,r and tree edges {vs,r, vcσi ,r} for all i ∈ {1, 2, . . . , k}.
ii. Unless the above results in a rooted tree with all nodes in Vr as leaves,

create a tree root ρr and tree edges connecting ρr to all previously created
internal tree nodes of Tr and to all character nodes in Vr that are not
joined to a previously added internal tree node.

In Fig. 2, we demonstrate the construction for our example instance from Fig. 1.
Notice that the trees in T are all of height up to 2, which means that storyline

visualization instances yield a special subclass of MLCM-TC instances. By con-

4

(bs1)
t1 t2 t3 t4 t5 t6 t7 t8

(es1) (bs2) (bs3) (es2) (es3) (bs4) (es4)

c3

c2
c1

c4
s1

s2

s3

s4

s1

s2 s2

s3s3

s4

T1 T2

T3 T4 T5 T6

T7 T8

Fig. 2. The MLCM-TC instance of the story of Fig. 1.

struction, an optimal solution of this MLCM-TC instance induces a storyline vi-
sualization with the minimum number of crossings, and, conversely, any instance
of this special MLCM-TC subclass with trees of height up to 2 is the result of
the given transformation for some story. Thus, both problems are equivalent. As
MLCM can be reduced to this special subclass, NP-hardness is maintained.

3 Integer Linear Programming Formulation

We present an integer linear programming (ILP) formulation of MLCM-TC.
ILP formulations have already been introduced for the general MLCM prob-
lem [16,18] as well as for MLCM-TC, when restricted to the special case of two
layers only [4]. Both models use quadratic ordering formulations. In this section,
we will extend these formulations to an ILP model for MLCM-TC.

To this end, let G = (V,E, T) be an instance of MLCM-TC, as described
in Sect. 2. For every layer r ∈ {1, 2, . . . , p}, let V (2)

r = {(i, j) ∈ Vr × Vr : i < j}
be the set of all the ordered pairs of nodes on the considered layer with the
first index smaller than the second. As the total number of edge crossings is
the sum of all crossings in adjacent layers r and r + 1, summed up for all
r ∈ {1, 2, . . . , p− 1}, let us consider the problem for a pair of adjacent layers
r and r + 1, with r ∈ {1, 2, . . . , p− 1}.

A permutation of the nodes in Vr is characterized by variables xrij ∈ {0, 1}
associated with the pairs (i, j) ∈ V (2)

r as follows:

xrij = 1 if and only if i is placed above j on layer r.

Then a pair of edges (i, k), (j, `) ∈ Er crosses if and only if

i is placed above j on layer r and ` is placed above k on layer r + 1

or

j is placed above i on layer r and k is placed above ` on layer r + 1,

see Fig. 3.

5

i

j

k

`

r r + 1

i

j k

`

r r + 1

i

j k

`

r r + 1

i

j

k

`

r r + 1

Fig. 3. An edge pair crosses in two of four cases.

Therefore, if {xrij | (i, j) ∈ V
(2)
r } and {xr+1

k` | (k, `) ∈ V (2)
r+1} describe node

permutations on layers r and r + 1, respectively, we have

cijk` := xrij(1− xr+1
k`) + (1− xrij)xr+1

k` ∈ {0, 1}

and cijk` = 1 if and only if the edges (i, k) and (j, `) cross.

It is well known (see, e.g., [14]) that {xrij ∈ {0, 1} | (i, j) ∈ V
(2)
r } characterizes

a node permutation on Vr if and only if the transitivity conditions

0 ≤ xrhi + xrij − xrhj ≤ 1 (h < i < j)

are satisfied for all r ∈ {1, 2, . . . , p}.
It remains to model the tree conditions implied by the elements of T . Given a

layer r ∈ {1, 2, . . . , p} and two nodes i and j in Vr, we denote by P (i, j) the lowest
common ancestor of i and j in Tr. Let V

(3)
r = {(h, i, j) ∈ Vr×Vr×Vr : h < i < j}.

For every r ∈ {1, 2, . . . , p} and every triple (h, i, j) ∈ V (3)
r , we impose the tree

constraints
xrhj = xrij if P (h, i) 6= P (P (h, i), j),

xrhi = xrhj if P (i, j) 6= P (h, P (i, j)).

The first equation forbids the placement of j between h and i in case j does not
belong to the smallest subtree containing h and i. Similarly, the second equation
forbids the placement of h between i and j in case h is not contained in the
smallest subtree of i and j.

Putting it all together, we obtain the following model for MLCM-TC based
on a combination of [18] for MLCM and [4] for the special case of MLCM-TC
for two layers:

minimize
p−1∑
r=1

∑
(i,j)∈V (2)

r , (k,`)∈V (2)
r+1

(i,k),(j,`)∈Er

xrij(1− xr+1
k`) + (1− xrij)xr+1

k`

6

subject to

0 ≤ xrhi + xrij − xrhj ≤ 1 for all r ∈ {1, 2, . . . , p} and (h, i, j) ∈ V (3)
r

xrhj = xrij for all r ∈ {1, 2, . . . , p} and (h, i, j) ∈ V (3)
r

if P (h, i) 6= P (P (h, i), j)

xrhi = xrhj for all r ∈ {1, 2, . . . , p} and (h, i, j) ∈ V (3)
r

if P (i, j) 6= P (h, P (i, j))

xrij ∈ {0, 1} for all r ∈ {1, 2, . . . , p} and (i, j) ∈ V (2)
r .

This is a quadratic 0-1-programming problem with linear constraints, namely,
the transitivity conditions and the tree conditions. (Without the tree conditions,
the problem is also called a quadratic linear ordering problem.)

When we temporarily ignore the transitivity conditions and the tree con-
ditions, the remaining problem is known as quadratic 0-1-optimization of the
form

minimize zTQz + qT z
s.t. z ∈ {0, 1}N

for an upper triangular matrix Q ∈ ZN×N and a vector q ∈ ZN . A well known
construction of Hammer [15], see also [2,10,23], results in an equivalent formula-
tion as a maximum cut problem on a graph Gmc = (Vmc, Emc) with N+1 nodes,
all but one are identified with the zi, i ∈ {1, 2, . . . , N}. Let us call the additional
node z0, so Vmc = {z0, z1, . . . , zN}. The undirected edges (zi, zj), 1 ≤ i < j ≤ N ,
correspond to the nonzero entries of the matrix Q, and there are additional N
edges (z0, zi) for 1 ≤ i ≤ N , giving the edge set Emc. The edge weights we = wij ,
0 ≤ i < j ≤ N , are easily computed from Q and q. For W ⊆ Vmc the edge set
δ(W) = {(i, j) ∈ Emc | i ∈ W, j ∈ Vmc \W} is called a cut in Gmc. Then the
resulting maximum cut problem has the form

max{w(δ(W)) |W ⊆ Vmc}.

By introducing variables ye ∈ {0, 1} for each e ∈ Emc, the maximum cut
problem can be formulated as

maximize
∑
e∈Emc

weye

subject to∑
e∈F

ye −
∑

e∈C\F
ye ≤ |F | − 1 for all cycles C ⊆ Emc and all F ⊆ C, |F | odd

ye ∈ {0, 1} for all e ∈ Emc ,

see [3]. The constraints are called odd cycle constraints.
Applying this transformation is the key to our algorithm: The edges e ∈ Emc

not incident to z0 correspond to edge pairs (i, k), (j, `) ∈ Er, r ∈ {1, 2, . . . , p− 1}.
The edges e ∈ Emc that are incident to z0 correspond to our variables xrij
for r ∈ {1, 2, . . . , p}, i < j. In view of the latter property, we can formulate
MLCM-TC as a maximum cut problem with the additional transitivity and tree
constraints, and we can solve it using a branch and cut approach for the maxi-
mum cut problem like in [2] that additionally enforces these extra constraints.

7

4 Implementation

The implementation used to determine the minimum number of crossings in a
storyline visualization consists of two main phases, a preprocessing phase and a
branch and cut phase. During the preprocessing, we first reduce the number of
layers of the problem (if possible), by identifying two consecutive layers r and
r + 1 in case the corresponding trees Tr and Tr+1 are identical and every node
in Vr and Vr+1 is an end of one edge of Er (e.g., layers 4 and 5 of Fig. 2 can
be identified). Then, a variant of the barycenter heuristic proposed by Sugiyama
et al. [29], in which the presence of the trees on layers is taken into account, is
executed in order to obtain an initial feasible solution that defines the indexing
within the layers: In this heuristic, the nodes of the trees are sorted according
to their barycenters. The barycenter of a given leaf t is computed by assigning
to each edge, that has t as end, the relative position of the other end as weight.
The barycenter of each internal node τ is the mean of the barycenters of all the
leaves of the subtree rooted at τ .

During the creation of the maximum cut graph induced by the heuristic
solution, we exploit the fact that the tree constraints force many variables to
assume the same value, so that we can identify them. Moreover, this procedure
reduces also the number of constraints consistently after all variables have been
replaced by their representatives: On the one hand, the tree constraints are
not needed in the formulation anymore; on the other hand, some transitivity
constraints become deactivated or redundant. It is important to point out that,
during this first phase, the problem is initialized without constraints and they
are added according to need during the subsequent branch and cut phase.

The branch and cut phase is realized in C++ using ABACUS [20] and
CPLEX [17]. The initial relaxation consists just of the objective function to-
gether with lower bounds 0 and upper bounds 1 for the variables. Odd cycle
constraints and transitivity constraints are generated via separation, the former
with the same strategy as described in [2], the latter by complete enumeration.

5 Computational Results

Our test-bed consists of:

– three movie instances [30], namely “Inception”, the original trilogy of “Star
Wars” and “The Matrix”;

– three book instances from the Stanford GraphBase database [21], namely
“Adventures of Huckleberry Finn”, “Anna Karenina” and “Les Misérables”.

These instances have been converted to MLCM-TC by using the procedure
described in Sect. 2. In the conversion of the book instances, a slight change is
required: Since these instances do not report time intervals, but just the list of
the characters involved in each scene of each chapter, a layer has been created
for each of these scenes, instead of for each beginning and ending time point.

8

The three movie instances have been generated using the raw data set from
[30] in order to compare them with results in the literature. We obtained “Incep-
tion”, “Star Wars” and “The Matrix” following the principles described in Sect. 2.
However, after having solved them, we realized that the number of crossings given
by our algorithm for “Inception” was 35, while it was 24 in [31] and 23 in [24].
After a careful study of the layouts provided in [24,31,32], we noticed that the
storylines of “Inception” and “The Matrix” in [24,31,32] differ from the raw data
set provided by [30], and therefore are not comparable with our instances.

In order to make a comparison possible, “Inception” required three major
modifications. This modified instance is called “Inception-sf” and is generated
by incorporating the following changes that are based on a careful study of the
layouts provided in [24,31,32]. The storyline for the character “Mal” is allowed
to take shortcuts, i.e., in long periods of absence it is drawn as a thin curve that
may cross other storylines without accounting for these crossings (see Fig. 12
in [24]). Moreover, the grouping at the end of the movie does not correspond
to the last scene in the data set. To keep our layout comparable, we enforced
in our new instance the same grouping at the end. The third discrepancy is the
number of characters. In the data from [30] there are ten characters listed in
the corresponding file, whereas the layouts from the literature [24,31,32] contain
only eight storylines, in which “Arch” and “Asian” are missing. A major modifi-
cation was also necessary in “The Matrix”, where the storylines for the characters
“Brown”, “Smith” and “Jones” are allowed to take shortcuts as well. We call it
“The Matrix-sf”.

Since the instances “Anna Karenina” and “Les Misérables” are very big, we
have split them into chapters and sequences of chapters. The resulting test-bed
is made of eight chapters, seven pairs of chapters, six triples of chapters and
five quadruples of chapters from “Anna Karenina”, and five chapters, four pairs
of chapters and three triples of chapters from “Les Misérables”, plus the entire
“Adventures of Huckleberry Finn”, “Inception-sf”, “Inception”, “Star Wars”, “The
Matrix-sf”, and “The Matrix”.

To the best of our knowledge, this is the first time in which ILP techniques are
applied to storyline visualizations. Thus comparisons of computational results
are not possible. Runs were performed on one node of the HPC Cluster of the
Computer Science Department of the University of Cologne. The node used
consists of two Intel E5-2690v2 CPUs with ten cores each and 128GB RAM.

While the book instances generated from the Stanford GraphBase database
are introduced here for the first time, the literature provides crossing counts
for the three movie instances (“Inception”, “Star Wars”, and “The Matrix”). Ta-
ble 1 shows a comparison of the minimum number of crossings (OPT) from our
approach with the numbers of crossings obtained by the streaming-oriented ap-
proach from Tanahashi et al. [31] (THM), the Storyflow approach from Liu et
al. [24] (LIU), and the evolutionary algorithm from Tanahashi and Ma [32] (TM).
Crossing counts for THM, LIU and TM are taken from Table 3 in [31]. We can
confirm that the best solution reported by Liu et al. [24] for the movie “Incep-
tion” is optimal. For “Star Wars” the approach from Tanahashi et al. [31] comes

9

very close to the optimal solution, even though the instance is the biggest and
has the highest crossing count. One may conclude that the heuristics in [24,31]
deliver solutions with a good crossing count, especially when considering the fact
that they do not optimize the crossing count alone.

Table 1. Comparison of the solution of the movies.

OPT THM [31] LIU [24] TM [32]
Inception-sf 23 24 23 99
Star Wars 39 41 48 51
The Matrix-sf 10 22 14 43

In Table 2, we report the information about the solution of the considered
instances: The number of layers (p), of nodes (|V |), of edges (|E|), the minimum
number of crossings (cr) in boldface or a pair [lower bound, best known number of
crossings], the number of variables (nvar), of odd cycle constraints added during
the separation (noddc), of transitivity constraints added during the separation
(ntrans), of subproblems in the branch and cut tree (nsub), of linear programming
relaxations solved (nLPs), and the runtime expressed in seconds (Time) where
“t.l.” means that the run was aborted due to the time limit of one hour, in which
cases the cr column contains an interval. While 29 of the 42 instances have been
solved to optimality, for the remaining 13 instances the best lower bound for the
number of crossings differs from the best solution found at timeout termination.

When we analyze the behaviour of our algorithm, we have to distinguish
between movie and book instances: Since the original instances from [30] allow
more than one scene per layer, the trees on the layers of the movie instances
restrict consistently the possible permutations of the corresponding nodes and
consequently reduce the number of variables. On the other hand, this is not
the case for the book instances, where only one scene per layer occurs. We can
observe that MLCM-TC for movies tends to be much easier in comparison to a
book instance with similar numbers of layers, nodes, and edges.

The difficulty of a book instance is mainly influenced by the combination
of two parameters: the number of layers p and the number of nodes |V |. If
the number of nodes is fixed, the higher the number of layers is, the easier the
solution is, since the distribution of the nodes on more layers reduces the number
of variables of the problem. On the other hand, if the number of layers is fixed,
the difficulty increases with the number of nodes.

The hardest instance we have been able to solve to optimality is “anna2-4”,
where 2 637 nodes are distributed on only 158 layers which results in 40 789
variables. The biggest solved instance in terms of number of layers is “jean1-3”
with 254 layers but only 2 853 nodes, which results in 27 720 variables.

We present crossing minimal storyline visualizations of the three movie in-
stances in Fig. 4 and the two book instances in Fig. 5.

10

Table 2. Information about the solution of the considered instances.

p |V | |E| cr nvar noddc ntrans nsub nLPs Time
anna1 58 409 368 20 1 944 2 684 60 31 344 13.03
anna2 58 525 489 12 3 689 2 665 1 1 126 0.88
anna3 48 265 219 0 951 0 0 1 1 0.01
anna4 49 364 334 20 2 116 2 231 48 13 159 4.86
anna5 71 615 565 17 3 821 3 182 60 3 197 2.60
anna6 56 522 495 31 3 586 4 368 49 3 150 3.89
anna7 62 467 420 9 2 525 2 278 82 17 191 7.88
anna8 28 192 175 6 1 036 850 1 1 45 0.15

anna1-2 117 1 454 1 397 57 16 433 18 284 89 5 545 196.24
anna2-3 108 1 461 1 394 28 18 763 16 849 29 3 469 48.96
anna3-4 100 1 015 951 34 8 473 8 516 45 3 328 12.66
anna4-5 126 1 808 1 748 78 23 742 26 129 181 3 814 306.32
anna5-6 129 1 760 1 697 76 19 967 23 155 252 3 656 281.26
anna6-7 120 1 445 1 385 79 14 464 32 396 671 5 3 008 1 387.57
anna7-8 90 905 850 32 7 248 8 711 265 3 365 19.16

anna1-3 166 2 948 2 865 [100, 199] 52 072 61 743 631 1 1 155 t.l.
anna2-4 158 2 637 2 557 78 40 789 46 600 351 3 2 042 1 284.03
anna3-5 174 3 100 3 012 [115, 224] 51 814 60 646 366 7 1 391 t.l.
anna4-6 178 3 115 3 044 [124, 298] 50 106 207 148 232 3 1 697 t.l.
anna5-7 191 3 742 3 656 [144, 361] 69 156 77 742 653 1 1 216 t.l.
anna6-8 146 2 205 2 140 [117, 200] 28 767 45 396 864 3 2 052 t.l.
anna1-4 216 4 627 4 534 [115, 339] 98 525 100 149 251 1 1 252 t.l.
anna2-5 232 5 366 5 266 [102, 350] 116 249 111 255 261 1 1 001 t.l.
anna3-6 226 5 262 5 168 [122, 424] 119 573 121 148 180 1 1 345 t.l.
anna4-7 240 5 467 5 375 [117, 504] 119 974 123 020 238 1 1 166 t.l.
anna5-8 217 4 624 4 534 [123, 470] 93 832 97 792 377 1 1 088 t.l.
huck 107 1 059 985 42 7 942 11 024 357 29 1 098 111.31

jean1 95 502 462 10 1 777 1 265 49 3 167 0.90
jean2 59 226 212 6 461 385 0 1 44 0.08
jean3 99 873 838 13 6 559 3 407 801 7 360 6.31
jean4 76 909 876 42 9 219 10 116 177 3 335 22.22
jean5 73 491 471 17 2 608 2 412 4 3 138 1.52

jean1-2 154 1 102 1 055 20 5 823 4 172 111 3 226 3.93
jean2-3 159 1 808 1 767 33 18 882 14 128 1 512 3 732 48.90
jean3-4 176 3 249 3 208 [115, 232] 57 746 66 222 482 1 1 698 t.l.
jean4-5 149 1 943 1 907 96 24 584 32 573 619 3 1 037 1012.44

jean1-3 254 2 853 2 780 53 27 720 20 886 1 991 3 1 177 143.34
jean2-4 235 4 182 4 135 [130, 302] 75 150 81 236 429 1 1 928 t.l.
jean3-5 248 4 429 4 386 [101, 372] 79 208 83 279 503 1 1 529 t.l.
Inception-sf 137 798 787 23 1 401 1 756 7 3 108 0.89
Inception 139 925 915 35 1 784 2 376 6 3 130 2.02
Star Wars 100 940 926 39 2 132 2 441 8 1 168 0.99
The Matrix-sf 82 678 660 10 1 343 1 219 18 3 125 0.72
The Matrix 82 683 669 12 1 388 1 328 45 3 98 0.77

11

(a) The movie “Inception” with 35 crossings.

(b) The movie “Inception-sf” with 23 crossings.

(c) The original trilogy of the movie “Star Wars” with 39 crossings.

(d) The movie “The Matrix” with 12 crossings.

Fig. 4. Storyline visualizations with minimum number of crossings of the three movies
from [30].

6 Conclusion

In this work we have tackled the crossing minimization problem in storyline visu-
alization via an ILP formulation. Despite being an NP-hard problem, computa-
tional results show that with our approach one can handle instances of medium
size within a reasonable time frame. However, our approach is of purely combina-
torial nature, thus, extending it to automatically generate storyline visualizations
such that other design criteria are taken into account is not straightforward.

Acknowledgments

The authors are grateful to Käte Zimmer who made her MLCM code, developed
in the context of her Master’s thesis [35], available to us. Her code served as the
basis for our experimental MLCM-TC implementation. Our work is supported
by the EU grant FP7-PEOPLE-2012-ITN - Marie-Curie Action “Initial Training
Networks” no. 316647 “Mixed-Integer Nonlinear Optimization” (MINO).

12

(a) The third chapter of the book “Anna Karenina” with 0 crossings.

(b) The first chapter of the book “Les Misérables” with 10 crossings.

Fig. 5. Storyline visualizations of two chapters from “Anna Karenina” and “Les Misé-
rables” [21].

References

1. Angelini, P., Da Lozzo, G., Di Battista, G., Frati, F., Roselli, V.: The importance
of being proper: (In clustered-level planarity and T -level planarity). Theoretical
Computer Science 571, 1–9 (2015)

2. Barahona, F., Jünger, M., Reinelt, G.: Experiments in quadratic 0-1 programming.
Mathematical Programming 44, 127–137 (1989)

3. Barahona, F., Mahjoub, A.R.: On the cut polytope. Mathematical Programming
36(2), 157–173 (1986)

4. Baumann, F., Buchheim, C., Liers, F.: Exact Bipartite Crossing Minimization
under Tree Constraints. In: Festa, P. (ed.) Proceedings of the 9th International
Symposium on Experimental Algorithms [SEA 2010]. pp. 118–128. Springer (2010)

5. Bekos, M.A., Kaufmann, M., Potika, K., Symvonis, A.: Line Crossing Minimization
on Metro Maps. In: Hong, S.H., Nishizeki, T., Quan, W. (eds.) Proceedings of the
15th International Symposium on Graph Drawing [GD 2007]. pp. 231–242. Springer
(2008)

6. Buchheim, C., Wiegele, A., Zheng, L.: Exact Algorithms for the Quadratic Linear
Ordering Problem. INFORMS Journal on Computing 22(1), 168–177 (2010)

7. Buchin, K., Buchin, M., Byrka, J., Nöllenburg, M., Okamoto, Y., Silveira, R.I.,
Wolff, A.: Drawing (Complete) Binary Tanglegrams. Algorithmica 62(1), 309–332
(2012)

8. Chimani, M., Hungerländer, P., Jünger, M., Mutzel, P.: An SDP Approach to
Multi-level Crossing Minimization. In: Müller-Hannemann, M., Werneck, R. (eds.)
Proceedings of the 13th Workshop on Algorithm Engineering and Experiments
[ALENEX 2011]. pp. 116–126. Society for Industrial and Applied Mathematics
(2011)

9. Cui, W., Liu, S., Tan, L., Shi, C., Song, Y., Gao, Z.J., Tong, X., Qu, H.: TextFlow:
Towards Better Understanding of Evolving Topics in Text. IEEE Transactions on
Visualization and Computer Graphics 17(12), 2412–2421 (2011)

13

10. De Simone, C.: The cut polytope and the Boolean quadric polytope. Discrete
Mathematics 79(1), 71–75 (1990)

11. Fernau, H., Kaufmann, M., Poths, M.: Comparing trees via crossing minimization.
Journal of Computer and System Sciences 76(7), 593–608 (2010)

12. Fink, M., Pupyrev, S.: Metro-Line Crossing Minimization: Hardness, Approxima-
tions, and Tractable Cases. In: Wismath, S., Wolff, A. (eds.) Proceedings of the
21st International Symposium on Graph Drawing [GD 2013]. pp. 328–339. Springer
(2013)

13. Garey, M.R., Johnson, D.S.: Crossing Number is NP-Complete. SIAM Journal on
Algebraic Discrete Methods 4(3), 312–316 (1983)

14. Grötschel, M., Jünger, M., Reinelt, G.: Facets of the Linear Ordering Polytope.
Mathematical Programming 33(1), 43–60 (1985)

15. Hammer, P.: Some network flow problems solved with pseudo-Boolean program-
ming. Operations Research 13, 388–399 (1965)

16. Healy, P., Kuusik, A.: Algorithms for multi-level graph planarity testing and layout.
Theoretical Computer Science 320(2–3), 331–344 (2004)

17. IBM: IBM ILOG CPLEX Optimization Studio 12.6. http://www-01.ibm.com/
software/commerce/optimization/cplex-optimizer/, 2014

18. Jünger, M., Lee, E.K., Mutzel, P., Odenthal, T.: A polyhedral approach to the
multi-layer crossing minimization problem. In: Di Battista, G. (ed.) Proceedings
of the 5th International Symposium on Graph Drawing [GD 1997]. pp. 13–24.
Springer (1997)

19. Jünger, M., Leipert, S., Mutzel, P.: Level Planarity Testing in Linear Time. In:
Whitesides, S.H. (ed.) Proceedings of the 6th International Symposium on Graph
Drawing [GD 1998]. pp. 224–237. Springer (1998)

20. Jünger, M., Thienel, S.: The ABACUS System for Branch-and-Cut-and-Price Algo-
rithms in Integer Programming and Combinatorial Optimization. Software: Prac-
tice and Experience 30, 1325–1352 (2000)

21. Knuth, D.E.: The Stanford GraphBase source. ftp://ftp.cs.stanford.edu/pub/
sgb/sgb.tar.gz, 1993

22. Kostitsyna, I., Nöllenburg, M., Polishchuk, V., Schulz, A., Strash, D.: On Mini-
mizing Crossings in Storyline Visualizations. In: Di Giacomo, E., Lubiw, A. (eds.)
Proceedings of the 23rd International Symposium on Graph Drawing and Network
Visualization [GD 2015]. pp. 192–198. Springer (2015)

23. Liers, F., Jünger, M., Reinelt, G., Rinaldi, G.: Computing Exact Ground States of
Hard Ising Spin Glass Problems by Branch-and-Cut. In: Hartmann, A.K., Rieger,
H. (eds.) New Optimization Algorithms in Physics, pp. 47–69. Wiley-VCH (2004)

24. Liu, S., Wu, Y., Wei, E., Liu, M., Liu, Y.: StoryFlow: Tracking the Evolution
of Stories. IEEE Transactions on Visualization and Computer Graphics 19(12),
2436–2445 (2013)

25. Muelder, C.W., Crnovrsanin, T., Sallaberry, A., Ma, K.L.: Egocentric Storylines
for Visual Analysis of Large Dynamic Graphs. In: Proceedings of the 2013 IEEE
International Conference on Big Data. pp. 56–62 (2013)

26. Munroe, R.: xkcd #657: Movie Narrative Charts. http://xkcd.com/657/, 2009
27. Nöllenburg, M., Völker, M., Wolff, A., Holten, D.: Drawing Binary Tanglegrams:

An Experimental Evaluation. In: Finocchi, I., Hershberger, J. (eds.) Proceedings of
the 11th Workshop on Algorithm Engineering and Experiments [ALENEX 2009].
pp. 106–119. Society for Industrial and Applied Mathematics (2009)

28. Ogawa, M., Ma, K.L.: Software Evolution Storylines. In: Telea, A.C. (ed.) Proceed-
ings of the 5th International Symposium on Software Visualization [SOFTVIS’10].
pp. 35–42. ACM (2010)

14

http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
http://www-01.ibm.com/software/commerce/optimization/cplex-optimizer/
ftp://ftp.cs.stanford.edu/pub/sgb/sgb.tar.gz
ftp://ftp.cs.stanford.edu/pub/sgb/sgb.tar.gz
http://xkcd.com/657/

29. Sugiyama, K., Tagawa, S., Toda, M.: Methods for Visual Understanding of Hier-
archical System Structures. IEEE Transactions on Systems, Man, and Cybernetics
11(2), 109–125 (1981)

30. Tanahashi, Y.: Movie data set. http://vis.cs.ucdavis.edu/~tanahashi/data_
downloads/storyline_visualizations/story_data.tar, 2013

31. Tanahashi, Y., Hsueh, C.H., Ma, K.L.: An Efficient Framework for Generating
Storyline Visualizations from Streaming Data. IEEE Transactions on Visualization
and Computer Graphics 21(6), 730–742 (2015)

32. Tanahashi, Y., Ma, K.L.: Design Considerations for Optimizing Storyline Visu-
alizations. IEEE Transactions on Visualization and Computer Graphics 18(12),
2679–2688 (2012)

33. Vehlow, C., Beck, F., Auwärter, P., Weiskopf, D.: Visualizing the Evolution of Com-
munities in Dynamic Graphs. Computer Graphics Forum 34(1), 277–288 (2015)

34. Wotzlaw, A., Speckenmeyer, E., Porschen, S.: Generalized k-ary tanglegrams on
level graphs: A satisfiability-based approach and its evaluation. Discrete Applied
Mathematics 160(16–17), 2349–2363 (2012)

35. Zimmer, K.: Ein Branch-and-Cut-Algorithmus für Mehrschichten-Kreuzungsmini-
mierung. Master’s thesis, Institut für Informatik, Universität zu Köln (2013)

15

http://vis.cs.ucdavis.edu/~tanahashi/data_downloads/storyline_visualizations/story_data.tar
http://vis.cs.ucdavis.edu/~tanahashi/data_downloads/storyline_visualizations/story_data.tar

	Crossing Minimization in Storyline Visualization

