Skip to main content

Experiments with Hierarchical Reinforcement Learning of Multiple Grasping Policies

  • Conference paper
  • First Online:
2016 International Symposium on Experimental Robotics (ISER 2016)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 1))

Included in the following conference series:

Abstract

Robotic grasping has attracted considerable interest, but it still remains a challenging task. The data-driven approach is a promising solution to the robotic grasping problem; this approach leverages a grasp dataset and generalizes grasps for various objects. However, these methods often depend on the quality of the given datasets, which are not trivial to obtain with sufficient quality. Although reinforcement learning approaches have been recently used to achieve autonomous collection of grasp datasets, the existing algorithms are often limited to specific grasp types. In this paper, we present a framework for hierarchical reinforcement learning of grasping policies. In our framework, the lower-level hierarchy learns multiple grasp types, and the upper-level hierarchy learns a policy to select from the learned grasp types according to a point cloud of a new object. Through experiments, we validate that our approach learns grasping by constructing the grasp dataset autonomously. The experimental results show that our approach learns multiple grasping policies and generalizes the learned grasps by using local point cloud information.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Bicchi, A., Kumar, V.: Robotic grasping and contact: a review. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 348–353 (2000)

    Google Scholar 

  2. Bohg, J., Morales, A., Asfour, T., Kragic, D.: Data-driven grasp synthesis- a survey. IEEE Trans. Robot. 30(2), 289–309 (2014)

    Article  Google Scholar 

  3. Goldfeder, C., Allen, P.K.: Data-driven grasping. Autonomous Robots 31, 1–20 (2011)

    Article  Google Scholar 

  4. Fischinger, D., Weiss, A., Vincze, M.: Learning grasps with topographic features. Intl. J. Robot. Res. 34, 1167–1194 (2015)

    Google Scholar 

  5. Kopicki, M., Detry, R., Adjigble, M., Stolkin, R., Leonardis, A., Wyatt, J.L.: One-shot learning and generation of dexterous grasps for novel objects. Intl. J. Robot. Res. (2015)

    Google Scholar 

  6. Lenz, I., Lee, H., Saxena, A.: Deep learning for detecting robotic grasps. Intl. J. Robot. Res. 34, 705–724 (2015)

    Google Scholar 

  7. Ten Pas, A., Platt, R.: Localizing handle-like grasp affordances in 3d point clouds. In: International Symposium on Experimental Robotics (ISER) (2014)

    Google Scholar 

  8. Gualtieri, M., Ten Pas, A., Saenko, K., Platt, R.: Using geometry to detect grasp poses in 3d point clouds. In: International Symposium on Robotics Research (ISRR) (2015)

    Google Scholar 

  9. Sutton, R., Barto, A.: Reinforcement Learning: An Introduction. The MIT Press, Cambridge (1998)

    Google Scholar 

  10. Pinto, L., Gupta, A.: Supersizing self-supervision: learning to grasp from 50k tries and 700 robot hours. In: IEEE International Conference on Robotics and Automation (ICRA) (2016)

    Google Scholar 

  11. Levine, S., Pastor, P., Krizhevsky, A., Quillen, D.: Learning hand-eye coordination for robotic grasping with deep learning and large-scale data collection. CoRR abs/1603.02199 (2016)

    Google Scholar 

  12. Napier, J.R.: The prehensile movements of the human hand. J. Bone Joint Surg. 38-B(4), 902–913 (1956)

    Google Scholar 

  13. Cutkosky, M.R., Howe, R.D.: Human grasp choice and robotic grasp analysis. In: Venkataraman, S.T., Iberall, T. (eds.) Dextrous Robot Hands, pp. 5–31. Springer, New York (1990)

    Google Scholar 

  14. Kroemer, O., Detry, R., Piater, J., Peters, J.: Combining active learning and reactive control for robot grasping. Robot. Autonomous Syst. 9, 1105–1116 (2010)

    Article  Google Scholar 

  15. Peters, J., Muelling, K., Altun, Y.: Relative entropy policy search. In: AAAI Conference on Artificial Intelligence (AAAI) (2010)

    Google Scholar 

  16. Kupcsik, A., Deisenroth, M.P., Peters, J., Loh, A.P., Vadakkepat, P., Neumann, G.: Model-based contextual policy search for data-efficient generalization of robot skills. Artificial Intell. (2014)

    Google Scholar 

  17. Deisenroth, M.P., Neumann, G., Peters, J.: A survey on policy search for robotics. Foundations Trends Robot. 21, 388–403 (2013)

    Google Scholar 

  18. Auer, P.: Using confidence bounds for exploitation-exploration trade-offs. J. Mach. Learn. Res. 3, 397–422 (2003)

    MathSciNet  MATH  Google Scholar 

  19. Srinivas, N., Krause, A., Kakade, S., Seeger, M.: Information-theoretic regret bounds for gaussian process optimization in the bandit setting. IEEE Trans. Inf. Theory 58(5), 3250–3265 (2012)

    Article  MathSciNet  Google Scholar 

  20. Calandra, R., Seyfarth, A., Peters, J., Deisenroth, M.P.: Bayesian optimization for learning gaits under uncertainty. Ann. Math. Artif. Intell. 76(1), 5–23 (2016)

    Article  MathSciNet  Google Scholar 

  21. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning). The MIT Press, Cambridge (2005)

    Google Scholar 

  22. Girard, A., Rasmussen, C.E., Candela, J.Q., Murray-Smith, R.: Gaussian process priors with uncertain inputs - application to multiple-step ahead time series forecasting. In: Advances in Neural Information Processing Systems (2002)

    Google Scholar 

  23. Candela, J.Q., Girard, A.: Prediction at an uncertain input for Gaussian processes and relevance vector machines - application to multiple-step ahead time-series forecasting. Technical report, Danish Technical University (2002)

    Google Scholar 

  24. Besl, P.J., McKay, N.D.: A method for registration of 3-d shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14(2), 239–256 (1992)

    Article  Google Scholar 

  25. Murray, R.M., Sastry, S.S., Zexiang, L.: A Mathematical Introduction to Robotic Manipulation, 1st edn. CRC Press Inc., Boca Raton (1994)

    MATH  Google Scholar 

  26. Ferrari, C., Canny, J.: Planning optimal grasps. In: IEEE International Conference on Robotics and Automation (ICRA), vol. 3, pp. 2290–2295, May 1992

    Google Scholar 

  27. Pokorny, F., Kragic, D.: Classical grasp quality evaluation: new algorithms and theory. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), pp. 3493–3500, November 2013

    Google Scholar 

  28. Peters, J., Schaal, S.: Reinforcement learning by reward-weighted regression for operational space control. In: International Conference on Machine Learning (ICML) (2007)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takayuki Osa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Osa, T., Peters, J., Neumann, G. (2017). Experiments with Hierarchical Reinforcement Learning of Multiple Grasping Policies. In: Kulić, D., Nakamura, Y., Khatib, O., Venture, G. (eds) 2016 International Symposium on Experimental Robotics. ISER 2016. Springer Proceedings in Advanced Robotics, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-50115-4_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50115-4_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50114-7

  • Online ISBN: 978-3-319-50115-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics