Skip to main content

Improving the Accuracy of Stereo Visual Odometry Using Visual Illumination Estimation

  • Conference paper
  • First Online:
2016 International Symposium on Experimental Robotics (ISER 2016)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 1))

Included in the following conference series:

Abstract

In the absence of reliable and accurate GPS, visual odometry (VO) has emerged as an effective means of estimating the egomotion of robotic vehicles. Like any dead-reckoning technique, VO suffers from unbounded accumulation of drift error over time, but this accumulation can be limited by incorporating absolute orientation information from, for example, a sun sensor. In this paper, we leverage recent work on visual outdoor illumination estimation to show that estimation error in a stereo VO pipeline can be reduced by inferring the sun position from the same image stream used to compute VO, thereby gaining the benefits of sun sensing without requiring a dedicated sun sensor or the sun to be visible to the camera. We compare sun estimation methods based on hand-crafted visual cues and Convolutional Neural Networks (CNNs) and demonstrate our approach on a combined 7.8 Km of urban driving from the popular KITTI dataset, achieving up to a 43 % reduction in translational average root mean squared error (ARMSE) and a 59 % reduction in final translational drift error compared to pure VO alone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Results from several state-of-the-art VO systems on the KITTI odometry benchmark can be found at http://www.cvlibs.net/datasets/kitti/eval_odometry.php.

  2. 2.

    https://github.com/jflalonde/illuminationSingleImage.

References

  1. Agarwal, S., Mierle, K.: Ceres solver. http://ceres-solver.org

  2. Cheng, Y., Maimone, M.W., Matthies, L.: Visual odometry on the mars exploration rovers. IEEE Robot. Autom. Mag. 13(2), 54–62 (2006)

    Article  Google Scholar 

  3. Eisenman, A.R., Liebe, C.C., Perez, R.: Sun sensing on the mars exploration rovers. In: Aerospace Conference Proceedings, vol. 5, pp. 5-2249–5-2262. IEEE (2002)

    Google Scholar 

  4. Fischler, M.A., Bolles, R.C.: Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography. Commun. ACM 24(6), 381–395 (1981)

    Article  MathSciNet  Google Scholar 

  5. Furgale, P., Barfoot, T.D.: Visual teach and repeat for long-range rover autonomy. J. Field Robot. 27(5), 534–560 (2010)

    Article  Google Scholar 

  6. Furgale, P., Enright, J., Barfoot, T.: Sun sensor navigation for planetary rovers. IEEE Trans. Aerosp. Electron. Syst. 47(3), 1631–1647 (2011)

    Article  Google Scholar 

  7. Geiger, A., Lenz, P., Stiller, C., Urtasun, R.: Vision meets robotics: the KITTI dataset. Int. J. Robot. Res. 32(11), 1231–1237 (2013)

    Article  Google Scholar 

  8. Geiger, A., Ziegler, J., Stiller, C.: StereoScan: dense 3D reconstruction in real-time. In: Proceedings of Intelligent Vehicles Symposium (IV), pp. 963–968. IEEE, June 2011

    Google Scholar 

  9. Kelly, J., Saripalli, S., Sukhatme, G.S.: Combined visual and inertial navigation for an unmanned aerial vehicle. In: Laugier, C., Siegwart, R. (eds.) Field and Service Robotics. Springer Tracts in Advanced Robotics, vol. 42, pp. 255–264. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  10. Lalonde, J.-F., Efros, A.A., Narasimhan, S.G.: Estimating the natural illumination conditions from a single outdoor image. Int. J. Comput. Vis. 98(2), 123–145 (2011)

    Article  MathSciNet  Google Scholar 

  11. Lambert, A., Furgale, P., Barfoot, T.D., Enright, J.: Field testing of visual odometry aided by a sun sensor and inclinometer. J. Field Robot. 29(3), 426–444 (2012)

    Article  Google Scholar 

  12. Ma, W.-C., Wang, S., Brubaker, M.A., Fidler, S., Urtasun, R.: Find your way by observing the sun and other semantic cues. 23 June 2016. arXiv:1606.07415

  13. Maimone, M., Cheng, Y., Matthies, L.: Two years of visual odometry on the mars exploration rovers. J. Field Robot. 24(3), 169–186 (2007)

    Article  Google Scholar 

  14. Olson, C.F., Matthies, L.H., Schoppers, M., Maimone, M.W.: Rover navigation using stereo ego-motion. Robot. Auton. Syst. 43(4), 215–229 (2003)

    Article  Google Scholar 

  15. Perez, R., Seals, R., Michalsky, J.: All-weather model for sky luminance distribution. Solar Energy 50(3), 235–245 (1993)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lee Clement .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Clement, L., Peretroukhin, V., Kelly, J. (2017). Improving the Accuracy of Stereo Visual Odometry Using Visual Illumination Estimation. In: Kulić, D., Nakamura, Y., Khatib, O., Venture, G. (eds) 2016 International Symposium on Experimental Robotics. ISER 2016. Springer Proceedings in Advanced Robotics, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-50115-4_36

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50115-4_36

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50114-7

  • Online ISBN: 978-3-319-50115-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics