Abstract
The paper reports on a new data-driven methodology for uncertainty quantification in centimeter-scale robots. We employ tools from functional expansion-based methods, the Karhunen-Loeve (KL) decomposition in particular, to identify appropriate reduced-order models of robotic systems through empirical observations, and discover underlying dominant dynamical behaviors of a system in the presence of uncertainty. The approach is applied to a quadrotor aerial vehicle tasked to hover at various heights from the ground. Several experimental data sets are collected to extract dominant modes. First-order modes correctly capture expected behaviors of the system, while higher-order modes quantify the degree of uncertainty at different hovering conditions. The information provided by this model can be used to develop robust controllers in the face of aerodynamic disturbances and unmodeled nonlinearities.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
The system is modeled using a second-order transfer function, and is controller through a PID controller; for more details see [5].
References
Bobadilla, L., Martinez, F., Gobst, E., Gossman, K., LaValle, S.M.: Controlling wild mobile robots using virtual gates and discrete transitions. In: American Control Conference, pp. 743–749 (2012)
Fine, B.T., Shell, D.A.: Eliciting collective behaviors through automatically generated environments. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3303–3308 (2013)
Heckman, C.R., Hsieh, M.A., Schwartz, I.B.: Controlling basin breakout for robots operating in uncertain flow environments. In: Hsieh, M.A., Khatib, O., Kumar, V. (eds.) Experimental Robotics. STAR, vol. 109, pp. 561–576. Springer, Heidelberg (2016). doi:10.1007/978-3-319-23778-7_37
Hsieh, M.A., Hajieghrary, H., Kularatne, D., Heckman, C.R., Forgoston, E., Schwartz, I.B., Yecko, P.A.: Small and adrift with self-control: using the environment to improve autonomy. In: International Symposium on Robotics Research, Sestri Levante, Italy, September 2015
Karydis, K., Poulakakis, I., Sun, J., Tanner, H.G.: Probabilistically valid stochastic extensions of deterministic models for systems with uncertainty. Int. J. Robot. Res. 34(10), 1278–1295 (2015)
Hall, J., Rasmussen, C.E., Maciejowski, J.: Modelling and control of nonlinear systems using gaussian processes with partial model information. In: 51st IEEE Conference on Decision and Control, pp. 5266–5271 (2012)
Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT Press, Cambridge (2006)
Hofmann, T., Schölkopf, B., Smola, A.J.: Kernel methods in machine learning. Ann. Stat. 36(3), 1171–1220 (2008)
Ogunfunmi, T.: Adaptive Nonlinear System Identification: The Volterra and Wiener Model Approaches. Signal and Communication Technology. Springer-Verlag, New York (2007)
Schmidt, M., Lipson, H.: Distilling free-form natural laws from experimental data. Science 324, 81–85 (2009)
Murphy, K.P.: Machine Learning: A Probabilistic Perspective. The MIT Press, Canbridge (2012)
Karhunen, K.: Uber lineare methoden in der wahrscheinlichkeitsrechnung. Ann. Acad. Sci. Fenn. 37, 1–79 (1946)
Loeve, M.: Probability Theory. Van Nostrand, Princeton (1955)
Hotelling, H.: Analysis of a complex statistical variables into principal components. J. Educ. Psychol. 24(6), 417–441 (1933)
Kirby, M.: Geometric Data Analysis. Wiley, New York (2001)
Johnson, W.: Helicopter Theory. Princeton University Press, Princeton (1980)
Powers, C., Mellinger, D., Kushleyev, A., Kothmann, B., Kumar, V.: Influence of aerodynamics and proximity effects in quadrotor flight. In: Desai, J.P., Dudek, G., Khatib, O., Kumar, V. (eds.) International Symposium on Experimental Robotics. STAR, vol. 88, pp. 289–302. Springer, Heidelberg (2012)
Acknowledgments
This work is supported in part by NSF under grant CMMI-1462825.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Karydis, K., Hsieh, M.A. (2017). Uncertainty Quantification for Small Robots Using Principal Orthogonal Decomposition. In: Kulić, D., Nakamura, Y., Khatib, O., Venture, G. (eds) 2016 International Symposium on Experimental Robotics. ISER 2016. Springer Proceedings in Advanced Robotics, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-50115-4_4
Download citation
DOI: https://doi.org/10.1007/978-3-319-50115-4_4
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-50114-7
Online ISBN: 978-3-319-50115-4
eBook Packages: EngineeringEngineering (R0)