Skip to main content

Uncertainty Quantification for Small Robots Using Principal Orthogonal Decomposition

  • Conference paper
  • First Online:
2016 International Symposium on Experimental Robotics (ISER 2016)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 1))

Included in the following conference series:

  • 4630 Accesses

Abstract

The paper reports on a new data-driven methodology for uncertainty quantification in centimeter-scale robots. We employ tools from functional expansion-based methods, the Karhunen-Loeve (KL) decomposition in particular, to identify appropriate reduced-order models of robotic systems through empirical observations, and discover underlying dominant dynamical behaviors of a system in the presence of uncertainty. The approach is applied to a quadrotor aerial vehicle tasked to hover at various heights from the ground. Several experimental data sets are collected to extract dominant modes. First-order modes correctly capture expected behaviors of the system, while higher-order modes quantify the degree of uncertainty at different hovering conditions. The information provided by this model can be used to develop robust controllers in the face of aerodynamic disturbances and unmodeled nonlinearities.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    The system is modeled using a second-order transfer function, and is controller through a PID controller; for more details see [5].

References

  1. Bobadilla, L., Martinez, F., Gobst, E., Gossman, K., LaValle, S.M.: Controlling wild mobile robots using virtual gates and discrete transitions. In: American Control Conference, pp. 743–749 (2012)

    Google Scholar 

  2. Fine, B.T., Shell, D.A.: Eliciting collective behaviors through automatically generated environments. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3303–3308 (2013)

    Google Scholar 

  3. Heckman, C.R., Hsieh, M.A., Schwartz, I.B.: Controlling basin breakout for robots operating in uncertain flow environments. In: Hsieh, M.A., Khatib, O., Kumar, V. (eds.) Experimental Robotics. STAR, vol. 109, pp. 561–576. Springer, Heidelberg (2016). doi:10.1007/978-3-319-23778-7_37

    Chapter  Google Scholar 

  4. Hsieh, M.A., Hajieghrary, H., Kularatne, D., Heckman, C.R., Forgoston, E., Schwartz, I.B., Yecko, P.A.: Small and adrift with self-control: using the environment to improve autonomy. In: International Symposium on Robotics Research, Sestri Levante, Italy, September 2015

    Google Scholar 

  5. Karydis, K., Poulakakis, I., Sun, J., Tanner, H.G.: Probabilistically valid stochastic extensions of deterministic models for systems with uncertainty. Int. J. Robot. Res. 34(10), 1278–1295 (2015)

    Article  Google Scholar 

  6. Hall, J., Rasmussen, C.E., Maciejowski, J.: Modelling and control of nonlinear systems using gaussian processes with partial model information. In: 51st IEEE Conference on Decision and Control, pp. 5266–5271 (2012)

    Google Scholar 

  7. Rasmussen, C.E., Williams, C.K.I.: Gaussian Processes for Machine Learning. MIT Press, Cambridge (2006)

    MATH  Google Scholar 

  8. Hofmann, T., Schölkopf, B., Smola, A.J.: Kernel methods in machine learning. Ann. Stat. 36(3), 1171–1220 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ogunfunmi, T.: Adaptive Nonlinear System Identification: The Volterra and Wiener Model Approaches. Signal and Communication Technology. Springer-Verlag, New York (2007)

    Book  MATH  Google Scholar 

  10. Schmidt, M., Lipson, H.: Distilling free-form natural laws from experimental data. Science 324, 81–85 (2009)

    Article  Google Scholar 

  11. Murphy, K.P.: Machine Learning: A Probabilistic Perspective. The MIT Press, Canbridge (2012)

    MATH  Google Scholar 

  12. Karhunen, K.: Uber lineare methoden in der wahrscheinlichkeitsrechnung. Ann. Acad. Sci. Fenn. 37, 1–79 (1946)

    Google Scholar 

  13. Loeve, M.: Probability Theory. Van Nostrand, Princeton (1955)

    MATH  Google Scholar 

  14. Hotelling, H.: Analysis of a complex statistical variables into principal components. J. Educ. Psychol. 24(6), 417–441 (1933)

    Article  MATH  Google Scholar 

  15. Kirby, M.: Geometric Data Analysis. Wiley, New York (2001)

    MATH  Google Scholar 

  16. Johnson, W.: Helicopter Theory. Princeton University Press, Princeton (1980)

    Google Scholar 

  17. Powers, C., Mellinger, D., Kushleyev, A., Kothmann, B., Kumar, V.: Influence of aerodynamics and proximity effects in quadrotor flight. In: Desai, J.P., Dudek, G., Khatib, O., Kumar, V. (eds.) International Symposium on Experimental Robotics. STAR, vol. 88, pp. 289–302. Springer, Heidelberg (2012)

    Chapter  Google Scholar 

Download references

Acknowledgments

This work is supported in part by NSF under grant CMMI-1462825.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos Karydis .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Karydis, K., Hsieh, M.A. (2017). Uncertainty Quantification for Small Robots Using Principal Orthogonal Decomposition. In: Kulić, D., Nakamura, Y., Khatib, O., Venture, G. (eds) 2016 International Symposium on Experimental Robotics. ISER 2016. Springer Proceedings in Advanced Robotics, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-50115-4_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50115-4_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50114-7

  • Online ISBN: 978-3-319-50115-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics