Skip to main content

Vision-Based Obstacle Avoidance for Micro Air Vehicles Using an Egocylindrical Depth Map

  • Conference paper
  • First Online:
2016 International Symposium on Experimental Robotics (ISER 2016)

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 1))

Included in the following conference series:

Abstract

Obstacle avoidance is an essential capability for micro air vehicles. Prior approaches have mainly been either purely reactive, mapping low-level visual features directly to headings, or deliberative methods that use onboard 3-D sensors to create a 3-D, voxel-based world model, then generate 3-D trajectories and check them for potential collisions with the world model. Onboard 3-D sensor suites have had limited fields of view. We use forward-looking stereo vision and lateral structure from motion to give a very wide horizontal and vertical field of regard. We fuse depth maps from these sources in a novel robot-centered, cylindrical, inverse range map we call an egocylinder. Configuration space expansion directly on the egocylinder gives a very compact representation of visible freespace. This supports very efficient motion planning and collision-checking with better performance guarantees than standard reactive methods. We show the feasibility of this approach experimentally in a challenging outdoor environment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Alvarez, H., Paz, L.M., Sturm, J., Cremers, D.: Collision avoidance for quadratures with a monocular camera. In: Hsieh, M.A., Khatib, O., Kumar, V. (eds.) Experimental Robotics. Springer Tracts in Advanced Robotics, vol. 109, pp. 195–209. Springer, Heidelberg (2016)

    Chapter  Google Scholar 

  2. Bajracharya, M., Howard, A., Matthies, L., Tang, B., Turmon, M.: Autonomous off-road navigation with end-to-end learning for the LAGR program. Field Robot. 26(1), 3–25 (2009)

    Article  MATH  Google Scholar 

  3. Daftry, D., Dey, D., Sandhawalia, H., Zeng, S., Bagnell, J.A., Hebert, M.: Semi-dense visual odometry for monocular navigation in cluttered environments. In: IEEE International Conference on Robotics and Automation, Workshop on Recent Advances in Sensing and Actuation for Bioinspired Agile Flight (2015)

    Google Scholar 

  4. Dey, D., et al.: Vision and learning for deliberative monocular cluttered flight. In: 10th Conference on Field and Service Robotics (2015)

    Google Scholar 

  5. Droeschel, D., Nieuwenhuisen, M., Beul, M., Holz, D., Stuckler, J., Behnke, S.: Multi-layered mapping and navigation for autonomous micro air vehicles. Field Robot. (2015)

    Google Scholar 

  6. Engel, J., Schöps, T., Cremers, D.: LSD-SLAM: large-scale direct monocular SLAM. In: European Conference on Computer Vision (ECCV), September 2014

    Google Scholar 

  7. Engel, J., Stuckler, J., Cremers, D.: Large-scale direct SLAM with stereo cameras. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, September 2015

    Google Scholar 

  8. Fraundorfer, F., Heng, L., Honegger, D., Lee, G.H., Meier, L., Tanskanen, P., Pollefeys, M.: Vision-based autonomous mapping and exploration using a quadrotor MAV. In: IEEE/RSJ International Conference on Intelligent Robots and Systems (2012)

    Google Scholar 

  9. Goldberg, S.B., Matthies, L.: Stereo and IMU assisted visual odometry on an OMAP3530 for small robots. In: IEEE Conference on Computer Vision and Pattern Recognition, Workshop on Embedded Computer Vision (2011)

    Google Scholar 

  10. Kendoul, F.: Survey of advances in guidance, navigation, and control of unmanned rotorcraft systems. Field Robot. 29(2), 315–378 (2012)

    Article  Google Scholar 

  11. Keshavan, J., Gremillion, G., Alvarez-Escobar, H., Humbert, J.S.: Autonomous vision-based navigation of a quadrature in corridor-like environments. Int. J. Micro Air Veh. 7(2), 111–123 (2015)

    Article  Google Scholar 

  12. Kuhn, M., Moser, S., Isler, O., Gurkaynak, F.K., Burg, A., Felber, N., Kaelin, H., Fichtner, W.: Efficient ASIC implementation of a real-time depth mapping stereo vision system. In: IEEE 46th Midwest Symposium on Circuits and Systems (2003)

    Google Scholar 

  13. Matthies, L., Brockers, R., Kuwata, Y., Weiss, S.: Stereo vision-based obstacle avoidance for micro air vehicles using disparity space. In: IEEE International Conference on Robotics and Automation (ICRA), pp. 3242–3249 (2014)

    Google Scholar 

  14. Nuske, S., Choudhury, S., Jain, S., Chambers, A., Yoder, L., Scherer, S., Chambelain, L., Cover, H., Singh, S.: Autonomous exploration and motion planning for an unmanned aerial vehicle navigating rivers. Field Robot. 32(8), 1141–1162 (2015)

    Article  Google Scholar 

  15. Oleynikova, H., Honegger, D., Pollefeys, M.: Reactive avoidance using embedded stereo vision for MAV flight. In: IEEE International Conference on Robotics and Automation (2015)

    Google Scholar 

  16. Otte, M.W., Richardson, S.G., Mulligan, J., Grudic, G.: Path planning in image space for autonomous robot navigation in unstructured outdoor environments. Field Robot. 26(2), 212–240 (2009)

    Article  Google Scholar 

  17. Schmid, K., Lutz, P., Tomic, T., Mair, E., Hirschmuller, H.: Autonomous vision-based micro air vehicle for indoor and outdoor navigation. Field Robot. 31(4), 537–570 (2014)

    Article  Google Scholar 

  18. Shen, S., Michael, N., Kumar, V.: 3D indoor exploration with a computationally constrained MAV. In: Robotics: Science and Systems (2011)

    Google Scholar 

  19. Weiss, S., Achtelik, M., Lynen, S., Achtelik, M., Kneip, L., Chli, M., Siegwart, R.: Monocular vision for long-term micro aerial vehicle state estimation: a compendium. Field Robot. 30(5), 803–831 (2013)

    Article  Google Scholar 

Download references

Acknowledgments

This work was funded by the Army Research Laboratory under the Micro Autonomous Systems & Technology Collaborative Technology Alliance program (MAST-CTA). JPL contributions were carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roland Brockers .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Brockers, R., Fragoso, A., Rothrock, B., Lee, C., Matthies, L. (2017). Vision-Based Obstacle Avoidance for Micro Air Vehicles Using an Egocylindrical Depth Map. In: Kulić, D., Nakamura, Y., Khatib, O., Venture, G. (eds) 2016 International Symposium on Experimental Robotics. ISER 2016. Springer Proceedings in Advanced Robotics, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-50115-4_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50115-4_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50114-7

  • Online ISBN: 978-3-319-50115-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics