Skip to main content

Collaborative 3D Reconstruction Using Heterogeneous UAVs: System and Experiments

  • Conference paper
  • First Online:
2016 International Symposium on Experimental Robotics (ISER 2016)

Abstract

This paper demonstrates how a heterogeneous fleet of unmanned aerial vehicles (UAVs) can support human operators in search and rescue (SaR) scenarios. We describe a fully autonomous delegation framework that interprets the top-level commands of the rescue team and converts them into actions of the UAVs. In particular, the UAVs are requested to autonomously scan a search area and to provide the operator with a consistent georeferenced 3D reconstruction of the environment to increase the environmental awareness and to support critical decision-making. The mission is executed based on the individual platform and sensor capabilities of rotary- and fixed-wing UAVs (RW-UAV and FW-UAV respectively): With the aid of an optical camera, the FW-UAV can generate a sparse point-cloud of a large area in a short amount of time. A LiDAR mounted on the autonomous helicopter is used to refine the visual point-cloud by generating denser point-clouds of specific areas of interest. In this context, we evaluate the performance of point-cloud registration methods to align two maps that were obtained by different sensors. In our validation, we compare classical point-cloud alignment methods to a novel probabilistic data association approach that specifically takes the individual point-cloud densities into consideration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Due to space constraints in this publication, only a subset of the data can be presented. However, the datasets can be requested from the authors.

  2. 2.

    For more details about the state estimation framework we refer to [8].

  3. 3.

    The vision point-clouds are generated using the commercial software pix4d.

References

  1. Oettershagen, P., Stastny, T., Mantel, T., Melzer, A., Rudin, K., Gohl, P., Agamennoni, G., Alexis, K., Siegwart, R.: Long-Endurance Sensing and Mapping Using a Hand-Launchable Solar-Powered UAV. In: Wettergreen, D.S., Barfoot, T.D. (eds.) Field and Service Robotics. STAR, vol. 113, pp. 441–454. Springer, Heidelberg (2016). doi:10.1007/978-3-319-27702-8_29

    Chapter  Google Scholar 

  2. Conte, G., Rudol, P., Doherty, P.: Evaluation of a light-weight lidar and a photogrammetric system for unmanned airborne mapping applications. PFG Photogrammetrie, Fernerkundung, Geoinformation 2014, 287–298 (2014)

    Article  Google Scholar 

  3. Agamennoni, G., Fontana, S., Siegwart, R.Y., Sorrenti, D.G.: Point clouds registration with probabilistic data association. In: Proceedings of the International Conference on Intelligent Robots and Systems. IEEE (2016)

    Google Scholar 

  4. Doherty, P., Kvarnström, J., Rudol, P., Wzorek, M., Conte, G., Berger, C., Hinzmann, T., Stastny, T.: A Collaborative Framework for 3D Mapping Using Unmanned Aerial Vehicles. In: Baldoni, M., Chopra, A.K., Son, T.C., Hirayama, K., Torroni, P. (eds.) PRIMA 2016. LNCS (LNAI), vol. 9862, pp. 110–130. Springer, Heidelberg (2016). doi:10.1007/978-3-319-44832-9_7

    Chapter  Google Scholar 

  5. Doherty, P., Heintz, F., Kvarnström, J.: High-level mission specification and planning for collaborative unmanned aircraft systems using delegation. Unmanned Syst. 1(1), 75–119 (2013)

    Article  Google Scholar 

  6. Skaloud, J.: Optimizing georeferencing of airborne survey systems by INS/DGPS. Ph.D. thesis, University of Calgary, Alberta (1999)

    Google Scholar 

  7. Britting, K.R.: Inertial Navigation Systems Analysis. Wiley, New York (1971)

    Google Scholar 

  8. Leutenegger, S., Melzer, A., Alexis, K., Siegwart, R.: Robust state estimation for small unmanned airplanes. In: 2014 IEEE Conference on Control Applications (CCA), pp. 1003–1010, October 2014

    Google Scholar 

  9. Besl, P.J., McKay, N.D.: A method for registration of 3-D shapes. IEEE Trans. Pattern Anal. Mach. Intell. 14, 239–256 (1992)

    Article  Google Scholar 

  10. Chen, Y., Medioni, G.: Object modelling by registration of multiple range images. Image Vis. Comput. 10, 145–155 (1992)

    Article  Google Scholar 

  11. Zhang, Z.: Iterative point matching for registration of free-form curves and surfaces. Int. J. Comput. Vis. 13, 119–152 (1994)

    Article  Google Scholar 

  12. Pomerleau, F., Colas, F., Siegwart, R., Magnenat, S.: Comparing ICP variants on real-world data sets. Auton. Robots 34, 133–148 (2013)

    Article  Google Scholar 

  13. Segal, A., Haehnel, D., Thrun, S.: Generalized-ICP. In: Proceedings of Robotics: Science and Systems, Seattle, USA, June 2009

    Google Scholar 

  14. Biber, P., Strasser, W.: The normal distributions transform: a new approach to laser scan matching. In: Proceedings of the 2003 IEEE/RSJ International Conference on Intelligent Robots and Systems, (IROS 2003), vol.3, pp. 2743-2748 (2003). doi:10.1109/IROS.2003.1249285

  15. Doherty, P., Kvarnström, J., Wzorek, W., Rudol, P., Heintz, F., Conte, G.: HDRC3 - a distributed hybrid deliberative/reactive architecture for unmanned aircraft systems. In: Valavanis, K.P., Vachtsevanos, G.J. (eds.) Handbook of Unmanned Aerial Vehicles, pp. 849–952. Springer, Heidelberg (2014)

    Google Scholar 

  16. Vempati, A.S., Agamennoni, G., Stastny, T., Siegwart, R.: Victim detection from a fixed-wing UAV: experimental results. In: Bebis, G., Boyle, R., Parvin, B., Koracin, D., Pavlidis, I., Feris, R., McGraw, T., Elendt, M., Kopper, R., Ragan, E., Ye, Z., Weber, G. (eds.) ISVC 2015. LNCS, vol. 9474, pp. 432–443. Springer, Heidelberg (2015). doi:10.1007/978-3-319-27857-5_39

    Chapter  Google Scholar 

Download references

Acknowledgment

The research leading to these results has received funding from the European Commission’s Seventh Framework Programme (FP7/2007-2013) under grant agreement n\(^\circ \)285417 (ICARUS) and n\(^\circ \)600958 (SHERPA). Furthermore, the authors want to thank Gabriel Agamennoni and Simone Fontana for providing an initial implementation of the probabilistic data association algorithm.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Timo Hinzmann .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Hinzmann, T. et al. (2017). Collaborative 3D Reconstruction Using Heterogeneous UAVs: System and Experiments. In: Kulić, D., Nakamura, Y., Khatib, O., Venture, G. (eds) 2016 International Symposium on Experimental Robotics. ISER 2016. Springer Proceedings in Advanced Robotics, vol 1. Springer, Cham. https://doi.org/10.1007/978-3-319-50115-4_5

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50115-4_5

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50114-7

  • Online ISBN: 978-3-319-50115-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics