Skip to main content

Strain- and Angular-Sensing Fabrics for Human Motion Analysis in Daily Life

  • Chapter
  • First Online:
Smart Textiles

Abstract

Human motion analysis concerns real-time tracking and recording of subject’s kinematics. The possibility to perform ambulatory and daily-life human motion monitoring would represent a breakthrough for many applications and disciplines. In this context, smart textiles can provide a valid alternative with respect to conventional solid-state sensors thanks to their low cost, lightweight, flexibility and possibility to be adapted to different body structures. The present chapter analyses the working principle, the manufacture and the characterisation of textile-based strain and angular sensors. The strain sensors are piezoresitive textiles that can be used to reconstruct the human movement by measuring the associated strain fields. The angular sensors can be manufactured by coupling two piezoresistive fabrics through an insulating layer and are able to directly measure angular displacement. These textile goniometers are not sensitive to the precise positioning and to the bending profile and provide a reliable measurement system which represents an important step forward in wearable human motion detection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 99.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 129.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhou, H., Hu, H.: Human motion tracking for rehabilitationa survey. Biomed. Signal Process. Control 3(1), 1–18 (2008)

    Article  Google Scholar 

  2. Moeslund, T.B., Hilton, A., Krüger, V.: A survey of advances in vision-based human motion capture and analysis. Comput. Vis. Image Underst. 104(2), 90–126 (2006)

    Article  Google Scholar 

  3. Frantz, D.D., Wiles, A., Leis, S., Kirsch, S.: Accuracy assessment protocols for electromagnetic tracking systems. Phys. Med. Biol. 48(14), 2241 (2003)

    Article  Google Scholar 

  4. Roetenberg, D., Slycke, P.J., Veltink, P.H.: Ambulatory position and orientation tracking fusing magnetic and inertial sensing. IEEE Trans. Biomed. Eng. 54(5), 883–890 (2007)

    Article  Google Scholar 

  5. Veltink, P.H., Rossi, D.D.: Wearable technology for biomechanics: e-textile or micromechanical sensors?[conversations in bme]. IEEE Eng. Med. Biol. Mag. 29(3), 37–43 (2010)

    Article  Google Scholar 

  6. De Rossi, D., Carpi, F., Lorussi, F., Mazzoldi, A., Scilingo, E., Tognetti, A.: Electroactive fabrics for distributed, conformable and interactive systems. In: Proceedings of IEEE Sensors, 2002, vol. 2, 1608–1613. IEEE (2002)

    Google Scholar 

  7. Scilingo, E.P., Lorussi, F., Mazzoldi, A., De Rossi, D.: Strain-sensing fabrics for wearable kinaesthetic-like systems. IEEE Sensors J. 3(4), 460–467 (2003)

    Article  Google Scholar 

  8. Tognetti, A., Bartalesi, R., Lorussi, F., De Rossi, D.: Body segment position reconstruction and posture classification by smart textiles. Trans. Inst. Measurement Control 29(3–4), 215–253 (2007)

    Article  Google Scholar 

  9. Vanello, N., Hartwig, V., Tesconi, M., Ricciardi, E., Tognetti, A., Zupone, G., Gassert, R., Chapuis, D., Sgambelluri, N., Scilingo, E.P., et al.: Sensing glove for brain studies: design and assessment of its compatibility for fmri with a robust test. IEEE/ASME Trans. Mechatronics 13(3), 345–354 (2008)

    Article  Google Scholar 

  10. Gibbs, P.T., Asada, H.H.: Wearable conductive fiber sensors for multi-axis human joint angle measurements. J. NeuroEng. Rehabil. 2(1), 7 (2005)

    Article  Google Scholar 

  11. Gioberto, G., Dunne, L.: Theory and characterization of a top-thread coverstitched stretch sensor. In: IEEE International Conference on Systems, Man, and Cybernetics, pp. 3275–3280. IEEE (2012)

    Google Scholar 

  12. Gioberto, G., Dunne, L.E.: Overlock-stitched stretch sensors: characterization and effect of fabric property. J. Textile Apparel Technol. Manag. 8(3) (2013)

    Google Scholar 

  13. Mattmann, C., Amft, O., Harms, H., Troster, G., Clemens, F.: Recognizing upper body postures using textile strain sensors. In: 2007 11th IEEE International Symposium on Wearable Computers, pp. 29–36. IEEE (2007)

    Google Scholar 

  14. Mattmann, C., Clemens, F., Tröster, G.: Sensor for measuring strain in textile. Sensors 8(6), 3719–3732 (2008)

    Article  Google Scholar 

  15. Bickerton, M.: Effects of fibre interactions on conductivity, within a knitted fabric stretch sensor. In: Proceedings of IEEE Eurowearable Conference, IET (2003)

    Google Scholar 

  16. Wijesiriwardana, R., Dias, T., Mukhopadhyay, S.: Resistive fibre-meshed transducers. In: Proceedings of the 7th IEEE International Symposium on Wearable Computers. IEEE Computer Society (2003)

    Google Scholar 

  17. Pacelli, M., Caldani, L., Paradiso, R.: Textile piezoresistive sensors for biomechanical variables monitoring. In: 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 5358–5361. IEEE (2006)

    Google Scholar 

  18. Huang, C.T., Shen, C.L., Tang, C.F., Chang, S.H.: A wearable yarn-based piezo-resistive sensor. Sensors Actuators A Phys. 141(2), 396–403 (2008)

    Article  Google Scholar 

  19. Paradiso, R., Caldani, L., De Toma, G.: From the design to real e-textile platforms for rehabilitation and chronic obstructive pulmonary diseases care. In: 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Volume 2015, p. 446 (2015)

    Google Scholar 

  20. Pacelli, M., Caldani, L., Paradiso, R.: Performances evaluation of piezoresistive fabric sensors as function of yarn structure. In: 35th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 6502–6505. IEEE (2013)

    Google Scholar 

  21. Tognetti, A., Lorussi, F., Bartalesi, R., Quaglini, S., Tesconi, M., Zupone, G., De Rossi, D.: Wearable kinesthetic system for capturing and classifying upper limb gesture in post-stroke rehabilitation. J. NeuroEng. Rehabil. 2 (2005)

    Google Scholar 

  22. Giorgino, T., Tormene, P., Lorussi, F., De Rossi, D., Quaglini, S.: Sensor evaluation for wearable strain gauges in neurological rehabilitation. IEEE Trans. Neural Syst. Rehabil. Eng. 17(4), 409–415 (2009)

    Article  Google Scholar 

  23. Cutolo, F., Mancinelli, C., Patel, S., Carbonaro, N., Schmid, M., Tognetti, A., De Rossi, D., Bonato, P.: A sensorized glove for hand rehabilitation. In: 2009 IEEE 35th Annual Northeast Bioengineering Conference, pp. 1–2. IEEE (2009)

    Google Scholar 

  24. Lorussi, F., Galatolo, S., De Rossi, D.: Textile-based electrogoniometers for wearable posture and gesture capture systems. IEEE Sensors J. 9(9), 1014–1024 (2009)

    Article  Google Scholar 

  25. Tognetti, A., Lorussi, F., Dalle Mura, G., Carbonaro, N., Pacelli, M., Paradiso, R., De Rossi, D.: New generation of wearable goniometers for motion capture systems. J. Neuroeng. Rehabil. 11(56) (2014)

    Google Scholar 

  26. Dalle Mura, G., Lorussi, F., Tognetti, A., Anania, G., Carbonaro, N., Pacelli, M., Paradiso, R., De Rossi, D.: Piezoresistive goniometer network for sensing gloves. In: XIII Mediterranean Conference on Medical and Biological Engineering and Computing 2013, pp. 1547–1550. Springer (2014)

    Google Scholar 

  27. Lipschiutz, M.M.: Differential Geometry. McGraw-Hill, New York (1984)

    Google Scholar 

  28. Smartex srl. www.smartex.it

  29. Lorussi, F.: Analysis and synthesis of human movement: wearable kinesthetic interfaces. Ph.D. Dissertation (2003)

    Google Scholar 

  30. Zhang, X., Pan, Y., Zheng, Q., Yi, X.: Time dependence of piezoresistance for the conductor-filled polymer composites. J. Polymer Sci. 38(21), 2739–2749 (2000)

    Article  Google Scholar 

  31. Peng, W., Feng, X., Tianhuai, D., Yuanzhen, Q.: Time dependence of electrical resistivity under uniaxial pressures for carbon black/polymer composites. J. Mater. Sci. 39(15), 4937–4939 (2004)

    Article  Google Scholar 

  32. Tognetti, A., Lorussi, F., Carbonaro, N., de Rossi, D.: Wearable goniometer and accelerometer sensory fusion for knee joint angle measurement in daily life. Sensors 15(11), 28435–28455 (2015)

    Article  Google Scholar 

  33. Tognetti, A., Lorussi, F., Carbonaro, N., De Rossi, D., De Toma, G., Mancuso, C., Paradiso, R., Luinge, H., Reenalda, J., Droog, E., et al.: Daily-life monitoring of stroke survivors motor performance: the interaction sensing system. In: 36th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 4099–4102. IEEE (2014)

    Google Scholar 

  34. Lorussi, F., Carbonaro, N., De Rossi, D.E., Paradiso, R., Veltink, P.H., Tognetti, A.: Wearable textile platform for assessing stroke patient treatment in daily life conditions. Front. Bioeng. Biotechnol. 4(28) (2016)

    Google Scholar 

  35. Bts. www.btsbioengineering.com/products/kinematics/bts-smart-dx/

  36. Carbonaro, N., Dalle Mura, G., Lorussi, F., Paradiso, R., De Rossi, D., Tognetti, A.: Exploiting wearable goniometer technology for motion sensing gloves. IEEE J. Biomed. Health Inf. 18(6), 1788–1795 (2014)

    Google Scholar 

  37. Lister, G.: The Hand: Diagnosis and Surgical Indications. Churchill Livingstone, London (1977)

    Google Scholar 

Download references

Acknowledgements

This research was partially supported by the EU-ICT 7th framework project FP7-ICT-2011-7-287351 INTERACTION.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandro Tognetti .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Lorussi, F., Carbonaro, N., De Rossi, D., Tognetti, A. (2017). Strain- and Angular-Sensing Fabrics for Human Motion Analysis in Daily Life. In: Schneegass, S., Amft, O. (eds) Smart Textiles. Human–Computer Interaction Series. Springer, Cham. https://doi.org/10.1007/978-3-319-50124-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50124-6_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50123-9

  • Online ISBN: 978-3-319-50124-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics