Skip to main content

Deep Learning for Classification of Malware System Call Sequences

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9992))

Abstract

The increase in number and variety of malware samples amplifies the need for improvement in automatic detection and classification of the malware variants. Machine learning is a natural choice to cope with this increase, because it addresses the need of discovering underlying patterns in large-scale datasets. Nowadays, neural network methodology has been grown to the state that can surpass limitations of previous machine learning methods, such as Hidden Markov Models and Support Vector Machines. As a consequence, neural networks can now offer superior classification accuracy in many domains, such as computer vision or natural language processing. This improvement comes from the possibility of constructing neural networks with a higher number of potentially diverse layers and is known as Deep Learning.

In this paper, we attempt to transfer these performance improvements to model the malware system call sequences for the purpose of malware classification. We construct a neural network based on convolutional and recurrent network layers in order to obtain the best features for classification. This way we get a hierarchical feature extraction architecture that combines convolution of n-grams with full sequential modeling. Our evaluation results demonstrate that our approach outperforms previously used methods in malware classification, being able to achieve an average of 85.6% on precision and 89.4% on recall using this combined neural network architecture.

This is a preview of subscription content, log in via an institution.

References

  1. PEInfo Service. https://github.com/crits/crits_services/tree/master/peinfo_service

  2. VirusTotal, May 2015. http://www.virustotal.com

  3. Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous systems. arXiv preprint arXiv:1603.04467 (2015)

  4. Attaluri, S., McGhee, S., Stamp, M.: Profile Hidden Markov Models and metamorphic virus detection. J. Comput. Virol. 5(2), 151–169 (2009)

    Article  Google Scholar 

  5. Bailey, M., Oberheide, J., Andersen, J., Mao, Z.M., Jahanian, F., Nazario, J.: Automated classification and analysis of internet malware. In: Kruegel, C., Lippmann, R., Clark, A. (eds.) RAID 2007. LNCS, vol. 4637, pp. 178–197. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74320-0_10

    Chapter  Google Scholar 

  6. Bayer, U., Comparetti, P.M., Hlauschek, C., Kruegel, C., Kirda, E.: Scalable, behavior-based malware clustering. In: ISOC Network and Distributed System Security Symposium (NDSS) (2009)

    Google Scholar 

  7. Bengio, Y.: Learning deep architectures for AI. Found. Trends Mach. Learn. 2(1), 1–127 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G., Turian, J., Warde-Farley, D., Bengio, Y.: Theano: a CPU and GPU math expression compiler. In: Python for Scientific Computing Conference (SciPy) (2010)

    Google Scholar 

  9. Bu, Z., et al.: McAfee Threats Report: Second Quarter 2012 (2012)

    Google Scholar 

  10. Dahl, G.E., Stokes, J.W., Deng, L., Yu, D.: Large-scale malware classification using random projections and neural networks. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2013)

    Google Scholar 

  11. Dietterich, T.G.: Approximate statistical tests for comparing supervised classification learning algorithms. Neural Comput. 10(7), 1895–1923 (1998)

    Article  Google Scholar 

  12. Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD (1996)

    Google Scholar 

  13. Guarnieri, C., Tanasi, A., Bremer, J., Schloesser, M.: The Cuckoo Sandbox (2012)

    Google Scholar 

  14. Heller, K., Svore, K., Keromytis, A.D., Stolfo, S.: One class support vector machines for detecting anomalous windows registry accesses. In: Workshop on Data Mining for Computer Security (DMSEC) (2003)

    Google Scholar 

  15. Huang, W., Stokes, J.W.: MtNet: a multi-task neural network for dynamic malware classification. In: Conference on Detection of Intrusions and Malware & Vulnerability Assessment (DIMVA) (2016)

    Google Scholar 

  16. Kolosnjaji, B., Zarras, A., Lengyel, T., Webster, G., Eckert, C.: Adaptive semantics-aware malware classification. In: Caballero, J., Zurutuza, U., Rodríguez, R.J. (eds.) DIMVA 2016. LNCS, vol. 9721, pp. 419–439. Springer, Heidelberg (2016). doi:10.1007/978-3-319-40667-1_21

    Chapter  Google Scholar 

  17. Lengyel, T.K., Maresca, S., Payne, B.D., Webster, G.D., Vogl, S., Kiayias, A.: Scalability, fidelity and stealth in the DRAKVUF dynamic malware analysis system. In: Annual Computer Security Applications Conference (ACSAC) (2014)

    Google Scholar 

  18. Maxwell, K.: Maltrieve, April 2015. https://github.com/krmaxwell/maltrieve

  19. Pascanu, R., Stokes, J.W., Sanossian, H., Marinescu, M., Thomas, A.: Malware classification with recurrent networks. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2015)

    Google Scholar 

  20. Perdisci, R., ManChon, U.: VAMO: towards a fully automated malware clustering validity analysis. In: Annual Computer Security Applications Conference (ACSAC) (2012)

    Google Scholar 

  21. Pfoh, J., Schneider, C., Eckert, C.: Leveraging string kernels for malware detection. In: Lopez, J., Huang, X., Sandhu, R. (eds.) NSS 2013. LNCS, vol. 7873, pp. 206–219. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38631-2_16

    Chapter  Google Scholar 

  22. Rieck, K., Holz, T., Willems, C., Düssel, P., Laskov, P.: Learning and classification of malware behavior. In: Zamboni, D. (ed.) DIMVA 2008. LNCS, vol. 5137, pp. 108–125. Springer, Heidelberg (2008). doi:10.1007/978-3-540-70542-0_6

    Chapter  Google Scholar 

  23. Roberts, J.-M.: Virus Share, November 2015. https://virusshare.com/

  24. Saxe, J., Berlin, K.: Features, deep neural network based malware detection using two dimensional binary program arXiv preprint arXiv:1508.03096 (2015)

  25. Schultz, M.G., Eskin, E., Zadok, E., Stolfo, S.J.: Data mining methods for detection of new malicious executables. In: IEEE Symposium on Security and Privacy (2001)

    Google Scholar 

  26. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  27. Tegeler, F., Fu, X., Vigna, G., Kruegel, C.: Botfinder: finding bots in network traffic without deep packet inspection. In International Conference on Emerging Networking Experiments and Technologies (CoNEXT) (2012)

    Google Scholar 

  28. Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008). 85

    MATH  Google Scholar 

  29. VirusTotal. File Statistics, November 2015. https://www.virustotal.com/en/statistics/

  30. Wagner, D., Soto, P.: Mimicry attacks on host-based intrusion detection systems. In: Conference on Computer and Communications Security (CCS) (2002)

    Google Scholar 

  31. Warrender, C., Forrest, S., Pearlmutter, B.: Detecting intrusions using system calls: alternative data models. In: IEEE Symposium on Security and Privacy (1999)

    Google Scholar 

  32. Webster, G.D., Hanif, Z.D., Ludwig, A.L.P., Lengyel, T.K., Zarras, A., Eckert, C.: SKALD: a scalable architecture for feature extraction, multi-user analysis, and real-time information sharing. In: Bishop, M., Nascimento, A.C.A. (eds.) ISC 2016. LNCS, vol. 9866, pp. 231–249. Springer, Heidelberg (2016). doi:10.1007/978-3-319-45871-7_15

    Chapter  Google Scholar 

  33. Xiao, H., Eckert, C.: Efficient online sequence prediction with side information. In: IEEE International Conference on Data Mining (ICDM) (2013)

    Google Scholar 

  34. Xiao, H., Stibor, T.: A supervised topic transition model for detecting malicious system call sequences. In: Workshop on Knowledge Discovery, Modeling and Simulation (2011)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bojan Kolosnjaji .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Kolosnjaji, B., Zarras, A., Webster, G., Eckert, C. (2016). Deep Learning for Classification of Malware System Call Sequences. In: Kang, B.H., Bai, Q. (eds) AI 2016: Advances in Artificial Intelligence. AI 2016. Lecture Notes in Computer Science(), vol 9992. Springer, Cham. https://doi.org/10.1007/978-3-319-50127-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50127-7_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50126-0

  • Online ISBN: 978-3-319-50127-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics