Abstract
The increase in number and variety of malware samples amplifies the need for improvement in automatic detection and classification of the malware variants. Machine learning is a natural choice to cope with this increase, because it addresses the need of discovering underlying patterns in large-scale datasets. Nowadays, neural network methodology has been grown to the state that can surpass limitations of previous machine learning methods, such as Hidden Markov Models and Support Vector Machines. As a consequence, neural networks can now offer superior classification accuracy in many domains, such as computer vision or natural language processing. This improvement comes from the possibility of constructing neural networks with a higher number of potentially diverse layers and is known as Deep Learning.
In this paper, we attempt to transfer these performance improvements to model the malware system call sequences for the purpose of malware classification. We construct a neural network based on convolutional and recurrent network layers in order to obtain the best features for classification. This way we get a hierarchical feature extraction architecture that combines convolution of n-grams with full sequential modeling. Our evaluation results demonstrate that our approach outperforms previously used methods in malware classification, being able to achieve an average of 85.6% on precision and 89.4% on recall using this combined neural network architecture.
Similar content being viewed by others
References
PEInfo Service. https://github.com/crits/crits_services/tree/master/peinfo_service
VirusTotal, May 2015. http://www.virustotal.com
Abadi, M., et al.: TensorFlow: large-scale machine learning on heterogeneous systems. arXiv preprint arXiv:1603.04467 (2015)
Attaluri, S., McGhee, S., Stamp, M.: Profile Hidden Markov Models and metamorphic virus detection. J. Comput. Virol. 5(2), 151–169 (2009)
Bailey, M., Oberheide, J., Andersen, J., Mao, Z.M., Jahanian, F., Nazario, J.: Automated classification and analysis of internet malware. In: Kruegel, C., Lippmann, R., Clark, A. (eds.) RAID 2007. LNCS, vol. 4637, pp. 178–197. Springer, Heidelberg (2007). doi:10.1007/978-3-540-74320-0_10
Bayer, U., Comparetti, P.M., Hlauschek, C., Kruegel, C., Kirda, E.: Scalable, behavior-based malware clustering. In: ISOC Network and Distributed System Security Symposium (NDSS) (2009)
Bengio, Y.: Learning deep architectures for AI. Found. Trends Mach. Learn. 2(1), 1–127 (2009)
Bergstra, J., Breuleux, O., Bastien, F., Lamblin, P., Pascanu, R., Desjardins, G., Turian, J., Warde-Farley, D., Bengio, Y.: Theano: a CPU and GPU math expression compiler. In: Python for Scientific Computing Conference (SciPy) (2010)
Bu, Z., et al.: McAfee Threats Report: Second Quarter 2012 (2012)
Dahl, G.E., Stokes, J.W., Deng, L., Yu, D.: Large-scale malware classification using random projections and neural networks. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2013)
Dietterich, T.G.: Approximate statistical tests for comparing supervised classification learning algorithms. Neural Comput. 10(7), 1895–1923 (1998)
Ester, M., Kriegel, H.-P., Sander, J., Xu, X.: A density-based algorithm for discovering clusters in large spatial databases with noise. In: KDD (1996)
Guarnieri, C., Tanasi, A., Bremer, J., Schloesser, M.: The Cuckoo Sandbox (2012)
Heller, K., Svore, K., Keromytis, A.D., Stolfo, S.: One class support vector machines for detecting anomalous windows registry accesses. In: Workshop on Data Mining for Computer Security (DMSEC) (2003)
Huang, W., Stokes, J.W.: MtNet: a multi-task neural network for dynamic malware classification. In: Conference on Detection of Intrusions and Malware & Vulnerability Assessment (DIMVA) (2016)
Kolosnjaji, B., Zarras, A., Lengyel, T., Webster, G., Eckert, C.: Adaptive semantics-aware malware classification. In: Caballero, J., Zurutuza, U., RodrÃguez, R.J. (eds.) DIMVA 2016. LNCS, vol. 9721, pp. 419–439. Springer, Heidelberg (2016). doi:10.1007/978-3-319-40667-1_21
Lengyel, T.K., Maresca, S., Payne, B.D., Webster, G.D., Vogl, S., Kiayias, A.: Scalability, fidelity and stealth in the DRAKVUF dynamic malware analysis system. In: Annual Computer Security Applications Conference (ACSAC) (2014)
Maxwell, K.: Maltrieve, April 2015. https://github.com/krmaxwell/maltrieve
Pascanu, R., Stokes, J.W., Sanossian, H., Marinescu, M., Thomas, A.: Malware classification with recurrent networks. In: IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP) (2015)
Perdisci, R., ManChon, U.: VAMO: towards a fully automated malware clustering validity analysis. In: Annual Computer Security Applications Conference (ACSAC) (2012)
Pfoh, J., Schneider, C., Eckert, C.: Leveraging string kernels for malware detection. In: Lopez, J., Huang, X., Sandhu, R. (eds.) NSS 2013. LNCS, vol. 7873, pp. 206–219. Springer, Heidelberg (2013). doi:10.1007/978-3-642-38631-2_16
Rieck, K., Holz, T., Willems, C., Düssel, P., Laskov, P.: Learning and classification of malware behavior. In: Zamboni, D. (ed.) DIMVA 2008. LNCS, vol. 5137, pp. 108–125. Springer, Heidelberg (2008). doi:10.1007/978-3-540-70542-0_6
Roberts, J.-M.: Virus Share, November 2015. https://virusshare.com/
Saxe, J., Berlin, K.: Features, deep neural network based malware detection using two dimensional binary program arXiv preprint arXiv:1508.03096 (2015)
Schultz, M.G., Eskin, E., Zadok, E., Stolfo, S.J.: Data mining methods for detection of new malicious executables. In: IEEE Symposium on Security and Privacy (2001)
Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)
Tegeler, F., Fu, X., Vigna, G., Kruegel, C.: Botfinder: finding bots in network traffic without deep packet inspection. In International Conference on Emerging Networking Experiments and Technologies (CoNEXT) (2012)
Van der Maaten, L., Hinton, G.: Visualizing data using t-SNE. J. Mach. Learn. Res. 9, 2579–2605 (2008). 85
VirusTotal. File Statistics, November 2015. https://www.virustotal.com/en/statistics/
Wagner, D., Soto, P.: Mimicry attacks on host-based intrusion detection systems. In: Conference on Computer and Communications Security (CCS) (2002)
Warrender, C., Forrest, S., Pearlmutter, B.: Detecting intrusions using system calls: alternative data models. In: IEEE Symposium on Security and Privacy (1999)
Webster, G.D., Hanif, Z.D., Ludwig, A.L.P., Lengyel, T.K., Zarras, A., Eckert, C.: SKALD: a scalable architecture for feature extraction, multi-user analysis, and real-time information sharing. In: Bishop, M., Nascimento, A.C.A. (eds.) ISC 2016. LNCS, vol. 9866, pp. 231–249. Springer, Heidelberg (2016). doi:10.1007/978-3-319-45871-7_15
Xiao, H., Eckert, C.: Efficient online sequence prediction with side information. In: IEEE International Conference on Data Mining (ICDM) (2013)
Xiao, H., Stibor, T.: A supervised topic transition model for detecting malicious system call sequences. In: Workshop on Knowledge Discovery, Modeling and Simulation (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Kolosnjaji, B., Zarras, A., Webster, G., Eckert, C. (2016). Deep Learning for Classification of Malware System Call Sequences. In: Kang, B.H., Bai, Q. (eds) AI 2016: Advances in Artificial Intelligence. AI 2016. Lecture Notes in Computer Science(), vol 9992. Springer, Cham. https://doi.org/10.1007/978-3-319-50127-7_11
Download citation
DOI: https://doi.org/10.1007/978-3-319-50127-7_11
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-50126-0
Online ISBN: 978-3-319-50127-7
eBook Packages: Computer ScienceComputer Science (R0)