Abstract
This paper aims to provide a unified framework for the evaluation and comparison of the many emergent meta-mining techniques. This framework is illustrated on the case study of the meta-learning problem in a large scale experiment. The results of this experiment are then explored through hypothesis testing in order to provide insight regarding the performance of the different meta-learning schemes, advertising the potential of our approach regarding meta-level knowledge discovery.
Similar content being viewed by others
References
Brazdil, P., Gama, J., Henery, B.: Characterizing the applicability of classification algorithms using meta-level learning. In: Bergadano, F., Raedt, L. (eds.) ECML 1994. LNCS, vol. 784, pp. 83–102. Springer, Heidelberg (1994). doi:10.1007/3-540-57868-4_52
Demšar, J.: Statistical comparisons of classifiers over multiple data sets. J. Mach. Learn. Res. 7, 1–30 (2006)
Dong, L., Frank, E., Kramer, S.: Ensembles of balanced nested dichotomies for multi-class problems. In: Jorge, A.M., Torgo, L., Brazdil, P., Camacho, R., Gama, J. (eds.) PKDD 2005. LNCS (LNAI), vol. 3721, pp. 84–95. Springer, Heidelberg (2005). doi:10.1007/11564126_13
Giraud-Carrier, C., Vilalta, R., Brazdil, P.: Introduction to the special issue on meta-learning. Mach. Learn. 54(3), 187–193 (2004)
Hall, M., Frank, E., Holmes, G., Pfahringer, B., Reutemann, P., Witten, I.H.: The weka data mining software: an update. ACM SIGKDD Explor. Newsl. 11(1), 10–18 (2009)
Hilario, M., Nguyen, P., Do, H., Woznica, A., Kalousis, A.: Ontology-based meta-mining of knowledge discovery workflows. In: Jankowski, N., Duch, W., Gra̧bczewski, K. (eds.) Meta-Learning in Computational Intelligence. Studies in Computational Intelligence, vol. 358, pp. 273–315. Springer, Heidelberg (2011)
Kalousis, A., Hilario, M.: Model selection via meta-learning: a comparative study. Int. J. Artif. Intell. Tools 10(04), 525–554 (2001)
Kalousis, A., Hilario, M.: Feature selection for meta-learning. In: Cheung, D., Williams, G.J., Li, Q. (eds.) PAKDD 2001. LNCS (LNAI), vol. 2035, pp. 222–233. Springer, Heidelberg (2001). doi:10.1007/3-540-45357-1_26
King, R.D., Feng, C., Sutherland, A.: StatLog: comparison of classification algorithms on large real-world problems. Int. J. Appl. Artif. Intell. 9(3), 289–333 (1995)
Kononenko, I., Bratko, I.: Information-based evaluation criterion for classifier’s performance. Mach. Learn. 6(1), 67–80 (1991)
Leite, R., Brazdil, P., Vanschoren, J.: Selecting classification algorithms with active testing. In: Perner, P. (ed.) MLDM 2012. LNCS (LNAI), vol. 7376, pp. 117–131. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31537-4_10
Leyva, E., Gonzalez, A., Perez, R.: A set of complexity measures designed for applying meta-learning to instance selection. IEEE Trans. Knowl. Data Eng. 27(2), 354–367 (2015)
Michie, D., Spiegelhalter, D.J., Taylor, C.C.: Machine Learning, Neural and Statistical Classification. Ellis Horwood, Upper Saddle River (1994)
Misir, M., Sebag, M.: Algorithm selection as a collaborative filtering problem, p. 43 (2013). hal-00922840
Nguyen, P., Hilario, M., Kalousis, A.: Using meta-mining to support data mining workflow planning and optimization. J. Artif. Intell. Res. 51, 605–644 (2014)
Peng, Y., Flach, P.A., Brazdil, P., Soares, C.: Decision tree-based data characterization for meta-learning. In: IDDM-2002 p. 111 (2002)
Pfahringer, B., Bensusan, H., Giraud-Carrier, C.: Tell me who can learn you and i can tell you who you are: landmarking various learning algorithms. In: Proceedings of the 17th International Conference on Machine Learning, pp. 743–750 (2000)
Platt, J., et al.: Sequential minimal optimization: A fast algorithm for training support vector machines (1998)
Robnik-Šikonja, M., Kononenko, I.: Theoretical and empirical analysis of relieff and rrelieff. Mach. Learn. 53(1–2), 23–69 (2003)
Serban, F., Vanschoren, J., Kietz, J.U., Bernstein, A.: A survey of intelligent assistants for data analysis. ACM Comput. Surv. (CSUR) 45(3), 31 (2013)
Sun, Q., Pfahringer, B.: Pairwise meta-rules for better meta-learning-based algorithm ranking. Mach. Learn. 93(1), 141–161 (2013)
Sun, Q., Pfahringer, B., Mayo, M.: Full model selection in the space of data mining operators. In: Proceedings of the 14th Annual Conference Companion on Genetic and Evolutionary Computation, pp. 1503–1504. ACM (2012)
Todorovski, L., Brazdil, P., Soares, C.: Report on the experiments with feature selection in meta-level learning. In: Proceedings of the PKDD 2000 Workshop on Data Mining, Decision Support, Meta-learning and ILP: Forum For Practical Problem Presentation and Prospective Solutions, pp. 27–39. Citeseer (2000)
Uno, T., Asai, T., Uchida, Y., Arimura, H.: An efficient algorithm for enumerating closed patterns in transaction databases. In: Suzuki, E., Arikawa, S. (eds.) DS 2004. LNCS (LNAI), vol. 3245, pp. 16–31. Springer, Heidelberg (2004). doi:10.1007/978-3-540-30214-8_2
Vanschoren, J., van Rijn, J.N., Bischl, B., Torgo, L.: OpenML: networked science in machine learning. SIGKDD Explor. 15(2), 49–60 (2013). http://doi.acm.org/10.1145/2641190.2641198
Vilalta, R., Drissi, Y.: A perspective view and survey of meta-learning. Artif. Intell. Rev. 18(2), 77–95 (2002). http://dx.doi.org/10.1023/A:1019956318069
Xu, L., Hutter, F., Shen, J., Hoos, H.H., Leyton-Brown, K.: SATzilla2012: improved algorithm selection based on cost-sensitive classification models, pp. 57–58 (2012)
Zakova, M., Kremen, P., Zelezny, F., Lavrac, N.: Automating knowledge discovery workflow composition through ontology-based planning. IEEE Trans. Autom. Sci. Eng. 8(2), 253–264 (2011)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Raynaut, W., Soule-Dupuy, C., Valles-Parlangeau, N. (2016). Meta-mining Evaluation Framework: A Large Scale Proof of Concept on Meta-learning. In: Kang, B.H., Bai, Q. (eds) AI 2016: Advances in Artificial Intelligence. AI 2016. Lecture Notes in Computer Science(), vol 9992. Springer, Cham. https://doi.org/10.1007/978-3-319-50127-7_18
Download citation
DOI: https://doi.org/10.1007/978-3-319-50127-7_18
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-50126-0
Online ISBN: 978-3-319-50127-7
eBook Packages: Computer ScienceComputer Science (R0)