Skip to main content

Local Search for Maximum Vertex Weight Clique on Large Sparse Graphs with Efficient Data Structures

  • Conference paper
  • First Online:
AI 2016: Advances in Artificial Intelligence (AI 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9992))

Included in the following conference series:

Abstract

The Maximum Vertex Weight Clique (MVWC) problem is a generalization of the Maximum Clique problem, which exists in many real-world applications. However, it is NP-hard and also very difficult to approximate. In this paper we developed a local search MVWC solver to deal with large sparse instances. We first introduce random walk into the multi-neighborhood greedy search, and then implement the algorithm with efficient data structures. Experimental results showed that our solver significantly outperformed state-of-the-art local search MVWC solvers. It attained all the best-known solutions, and found new best-known solutions on some instances.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Notes

  1. 1.

    https://github.com/Fan-Yi/Local-Search-for-Maximum-Vertex-Weight-Clique-on-Large-Sparse-Graphs-with-Efficient-Data-Structures.

  2. 2.

    http://www.graphrepository.com/networks.php.

  3. 3.

    In [27], both solvers are incorporated with a heuristic named BMS to solve large instances. For simplicity, we write them as MN/TS and LSCC for short.

  4. 4.

    For any vertices u and v, we use \(u = v\) to denote that u and v are the same vertex.

References

  1. Amgalan, B., Lee, H.: Wmaxc: a weighted maximum clique method for identifying condition-specific sub-network. PLoS ONE 9(8), e104993 (2014)

    Article  Google Scholar 

  2. Babel, L.: A fast algorithm for the maximum weight clique problem. Computing 52(1), 31–38 (1994). http://dx.doi.org/10.1007/BF02243394

    Article  MathSciNet  MATH  Google Scholar 

  3. Balasundaram, B., Butenko, S.: Graph domination, coloring and cliques in telecommunications. In: Resende, M.G.C., Pardalos, P.M. (eds.) Handbook of Optimization in Telecommunications, pp. 865–890. Springer, Heidelberg (2006)

    Chapter  MATH  Google Scholar 

  4. Ballard, D.H., Brown, C.M.: Computer Vision, 1st edn. Prentice Hall Professional Technical Reference, New York (1982)

    Google Scholar 

  5. Barabasi, A.L., Albert, R.: Emergence of scaling in random networks. Science 286(5439), 509–512 (1999). http://www.sciencemag.org/cgi/content/abstract/286/5439/509

    Article  MathSciNet  MATH  Google Scholar 

  6. Battiti, R., Protasi, M.: Reactive local search for the maximum clique problem. Algorithmica 29(4), 610–637 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bomze, I.M., Pelillo, M., Stix, V.: Approximating the maximum weight clique using replicator dynamics. IEEE Trans. Neural Netw. Learn. Syst. 11(6), 1228–1241 (2000). http://dx.doi.org/10.1109/72.883403

    Article  Google Scholar 

  8. Brendel, W., Amer, M.R., Todorovic, S.: Multiobject tracking as maximum weight independent set. In: 24th IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2011, Colorado Springs, CO, USA, 20–25 June 2011, pp. 1273–1280 (2011). http://dx.doi.org/10.1109/CVPR.2011.5995395

  9. Brendel, W., Todorovic, S.: Segmentation as maximum-weight independent set. In: Advances in Neural Information Processing Systems 23: 24th Annual Conference on Neural Information Processing Systems 2010. Proceedings of a meeting held 6–9 December 2010, Vancouver, British Columbia, Canada, pp. 307–315 (2010). http://papers.nips.cc/paper/3909-segmentation-as-maximum-weight-independent-set

  10. Busygin, S.: A new trust region technique for the maximum weight clique problem. Discrete Appl. Math. 154(15), 2080–2096 (2006). http://dx.doi.org/10.1016/j.dam.2005.04.010

    Article  MathSciNet  MATH  Google Scholar 

  11. Cai, S.: Balance between complexity and quality: local search for minimum vertex cover in massive graphs. In: Proceedings of the Twenty-Fourth International Joint Conference on Artificial Intelligence, IJCAI 2015, Buenos Aires, Argentina, 25–31 July 2015, pp. 747–753 (2015). http://ijcai.org/papers15/Abstracts/IJCAI15-111.html

  12. Chung, F., Lu, L.: Complex Graphs and Networks, vol. 107. American Mathematical Society (2006). https://books.google.com.au/books?id=BqqDsEKlAE4C

  13. Eubank, S., Kumar, V.S.A., Marathe, M.V., Srinivasan, A., Wang, N.: Structural and algorithmic aspects of massive social networks. In: Proceedings of the Fifteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2004, New Orleans, Louisiana, USA, 11–14 January 2004, pp. 718–727 (2004). http://dl.acm.org/citation.cfm?id=982792.982902

  14. Fang, Z., Li, C., Qiao, K., Feng, X., Xu, K.: Solving maximum weight clique using maximum satisfiability reasoning. In: 21st European Conference on Artificial Intelligence, ECAI 2014, 18–22 August 2014, Prague, Czech Republic - Including Prestigious Applications of Intelligent Systems (PAIS 2014), pp. 303–308 (2014). http://dx.doi.org/10.3233/978-1-61499-419-0-303

  15. Feige, U.: Approximating maximum clique by removing subgraphs. SIAM J. Discret. Math. 18(2), 219–225 (2005). http://dx.doi.org/10.1137/S089548010240415X

    Article  MathSciNet  MATH  Google Scholar 

  16. Johnson, D.J., Trick, M.A. (eds.): Cliques, Coloring, and Satisfiability: Second DIMACS Implementation Challenge, Workshop, October 11–13, 1993. American Mathematical Society, Boston (1996)

    MATH  Google Scholar 

  17. Karp, R.M.: Reducibility among combinatorial problems. In: Proceedings of a Symposium on the Complexity of Computer Computations, 20–22 March 1972. At the IBM Thomas J. Watson Research Center, Yorktown Heights, New York, pp. 85–103 (1972). http://www.cs.berkeley.edu/luca/cs172/karp.pdf

  18. Li, N., Latecki, L.J.: Clustering aggregation as maximum-weight independent set. In: Advances in Neural Information Processing Systems 25: 26th Annual Conference on Neural Information Processing Systems 2012. Proceedings of a meeting held 3–6 December 2012, Lake Tahoe, Nevada, United States, pp. 791–799 (2012). http://papers.nips.cc/paper/4731-clustering-aggregation-as-maximum-weight-independent-set

  19. Ma, T., Latecki, L.J.: Maximum weight cliques with mutex constraints for video object segmentation. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, Providence, RI, USA, 16–21 June 2012, pp. 670–677 (2012). http://dx.doi.org/10.1109/CVPR.2012.6247735

  20. Miller, B.L., Goldberg, D.E.: Genetic algorithms, tournament selection, and the effects of noise. Complex Syst. 9(3), 193–212 (1995)

    MathSciNet  Google Scholar 

  21. Östergård, P.R.J.: A new algorithm for the maximum-weight clique problem. Nord. J. Comput. 8(4), 424–436 (2001). http://www.cs.helsinki.fi/njc/References/ostergard2001:424.html

    MathSciNet  MATH  Google Scholar 

  22. Pullan, W.J.: Approximating the maximum vertex/edge weighted clique using local search. J. Heuristics 14(2), 117–134 (2008). http://dx.doi.org/10.1007/s10732-007-9026-2

    Article  MATH  Google Scholar 

  23. Ravetti, M.G., Moscato, P.: Identification of a 5-protein biomarker molecular signature for predicting alzheimer’s disease. PLoS ONE 3(9), e3111 (2008)

    Article  Google Scholar 

  24. Rossi, R.A., Ahmed, N.K.: Coloring large complex networks. Soc. Netw. Analys. Min. 4(1), 228 (2014). http://dx.doi.org/10.1007/s13278-014-0228-y

    Article  Google Scholar 

  25. Rossi, R.A., Ahmed, N.K.: The network data repository with interactive graph analytics and visualization. In: Proceedings of the Twenty-Ninth AAAI Conference on Artificial Intelligence (2015)

    Google Scholar 

  26. Rossi, R.A., Gleich, D.F., Gebremedhin, A.H., Patwary, M.M.A.: Fast maximum clique algorithms for large graphs. In: 23rd International World Wide Web Conference, WWW 2014, Seoul, Republic of Korea, 7–11 April 2014, Companion Volume, pp. 365–366 (2014). http://doi.acm.org/10.1145/2567948.2577283

  27. Wang, Y., Cai, S., Yin, M.: Two efficient local search algorithms for maximum weight clique problem. In: Proceedings of the Thirtieth AAAI Conference on Artificial Intelligence, 12–17 February 2016, Phoenix, Arizona, USA, pp. 805–811 (2016). http://www.aaai.org/ocs/index.php/AAAI/AAAI16/paper/view/11915

  28. Wu, Q., Hao, J., Glover, F.: Multi-neighborhood tabu search for the maximum weight clique problem. Ann. OR 196(1), 611–634 (2012). http://dx.doi.org/10.1007/s10479-012-1124-3

    Article  MathSciNet  MATH  Google Scholar 

  29. Xu, K., Boussemart, F., Hemery, F., Lecoutre, C.: A simple model to generate hard satisfiable instances. In: Proceedings of the 19th International Joint Conference on Artificial Intelligence, IJCAI 2005, pp. 337–342. Morgan Kaufmann Publishers Inc., San Francisco (2005). http://dl.acm.org/citation.cfm?id=1642293.1642347

  30. Yamaguchi, K., Masuda, S.: A new exact algorithm for the maximum weight clique problem. In: ITC-CSCC: 2008, pp. 317–320 (2008)

    Google Scholar 

Download references

Acknowledgment

We thank all anonymous reviewers for their valuable comments. This work is supported by ARC Grant FT0991785, NSF Grant No.61463044, NSFC Grant No.61572234 and Grant No.[2014]7421 from the Joint Fund of the NSF of Guizhou province of China.

We gratefully acknowledge the support of the Griffith University eResearch Services Team and the use of the High Performance Computing Cluster “Gowonda” to complete this research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi Fan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Fan, Y., Li, C., Ma, Z., Wen, L., Sattar, A., Su, K. (2016). Local Search for Maximum Vertex Weight Clique on Large Sparse Graphs with Efficient Data Structures. In: Kang, B.H., Bai, Q. (eds) AI 2016: Advances in Artificial Intelligence. AI 2016. Lecture Notes in Computer Science(), vol 9992. Springer, Cham. https://doi.org/10.1007/978-3-319-50127-7_21

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50127-7_21

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50126-0

  • Online ISBN: 978-3-319-50127-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics