Skip to main content

Composability in Cognitive Hierarchies

  • Conference paper
  • First Online:
AI 2016: Advances in Artificial Intelligence (AI 2016)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 9992))

Included in the following conference series:

Abstract

This paper develops a theory of node composition in a formal framework for cognitive hierarchies. It builds on an existing model for the integration of symbolic and sub-symbolic representations in a robot architecture consisting of nodes in a hierarchy. A notion of behaviour equivalence between cognitive hierarchies is introduced and node composition operators that preserve this equivalence are defined. This work is significant in two respects. Firstly, it opens the way for a formal comparison between cognitive robotic systems. Secondly, composition, more precisely decomposition, has been shown to be important to many fields, and may therefore prove of practical benefit in the context of cognitive systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Albus, J.S.: Engineering of Mind: An Introduction to the Science of Intelligent Systems. Wiley, New York (2001)

    Google Scholar 

  2. Amir, E., Engelhardt, B.: Factored planning. In: Proceedings of IJCAI, pp. 929–935. Morgan Kaufmann (2003)

    Google Scholar 

  3. Anderson, J.R.: Rules of the Mind. Lawrence Erlbaum Associates Inc., New Jersey (1993)

    Google Scholar 

  4. Belle, V., Levesque, H.J.: Robot location estimation in the situation calculus. J. Appl. Logic 13(4), 397–413 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brafman, R.I., Domshlak, C.: Factored planning: how, when, and when not. In: Proceedings of AAAI, pp. 809–814 (2006)

    Google Scholar 

  6. Brooks, R.A.: A robust layered control system for a mobile robot. IEEE J. Robot. Autom. 2(1), 14–23 (1986)

    Article  Google Scholar 

  7. Brooks, R.A.: Elephants don’t play chess. Robot. Auton. Syst. 6, 3–15 (1990)

    Article  Google Scholar 

  8. Cerexhe, T.J., Rajaratnam, D., Saffidine, A., Thielscher, M.: A systematic solution to the (de-)composition problem in general game playing. In: Proceedings of ECAI, pp. 195–200 (2014)

    Google Scholar 

  9. Clark, K., Hengst, B., Pagnucco, M., Rajaratnam, D., Robinson, P., Sammut, C., Thielscher, M.: A framework for integrating symbolic and sub-symbolic representations. In: Proceedings of IJCAI, pp. 2486–2492 (2016)

    Google Scholar 

  10. De Giacomo, G., Sardiña, S.: Automatic synthesis of new behaviors from a library of available behaviors. In: Proceedings of IJCAI, pp. 1866–1871 (2007)

    Google Scholar 

  11. Hengst, B.: Hierarchical approaches. In: Wiering, M., van Otterlo, M. (eds.) Reinforcement Learning: State of the Art. Adaptation, Learning, and Optimization, vol. 12, pp. 293–323. Springer, Heidelberg (2011). doi:10.1007/978-3-642-27645-3_9

    Chapter  Google Scholar 

  12. Jaeger, H., Christaller, T.: Dual dynamics: designing behavior systems for autonomous robots. Artif. Life Robot. 2(3), 108–112 (1998)

    Article  Google Scholar 

  13. Laird, J.E., Kinkade, K.R., Mohan, S., Xu, J.Z.: Cognitive robotics using the soar cognitive architecture. Cognitive Robotics AAAI Technical report WS-12-06, pp. 46–54 (2012)

    Google Scholar 

  14. Laird, J.E., Newell, A., Rosenbloom, P.S.: SOAR: an architecture for general intelligence. Artif. Intell. 33(1), 1–64 (1987)

    Article  Google Scholar 

  15. Lee, D., Kim, H., Myung, H.: GPU-based real-time RGB-D 3D SLAM. In: Proceedings Ubiquitous Robots and Ambient Intelligence (URAI), pp. 46–48. IEEE (2012)

    Google Scholar 

  16. Nilsson, N.: Teleo-reactive programs and the triple-tower architecture. Electron. Trans. Artif. Intell. 5, 99–110 (2001)

    Google Scholar 

  17. Sacerdoti, E.D.: Planning in a hierarchy of abstraction spaces. Artif. Intell. 5(2), 115–135 (1974)

    Article  MATH  Google Scholar 

Download references

Acknowledgements

This material is based upon work supported by the Asian Office of Aerospace Research and Development (AOARD) under Award No: FA2386-15-1-0005. This research was also supported under Australian Research Council’s (ARC) Discovery Projects funding scheme (project number DP 150103035). Michael Thielscher is also affiliated with the University of Western Sydney.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to David Rajaratnam .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Rajaratnam, D., Hengst, B., Pagnucco, M., Sammut, C., Thielscher, M. (2016). Composability in Cognitive Hierarchies. In: Kang, B.H., Bai, Q. (eds) AI 2016: Advances in Artificial Intelligence. AI 2016. Lecture Notes in Computer Science(), vol 9992. Springer, Cham. https://doi.org/10.1007/978-3-319-50127-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50127-7_4

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50126-0

  • Online ISBN: 978-3-319-50127-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics