Abstract
Learning to control one’s own brain activity using neurofeedback can cause cognitive and behavioral improvements in healthy individuals and neurological patients. However, little is known about the impact of feedback design. Therefore, we investigated the effects of traditional two-dimensional and three-dimensional virtual reality based feedback modules on training performance and user experience in stroke patients. Neurofeedback performance was comparable between conditions. Interest, perceived feeling of control, and motivation were higher in patients using the virtual reality application compared to the two-dimensional feedback condition. In contrary, patients who performed the virtual reality training showed higher values in incompetence fear and lower values in mastery confidence compared to the traditional training group. These results indicate that neurofeedback can be improved with the implementation of virtual reality scenarios, especially with regard to patients’ interest and motivation. However, stroke patients might be more skeptical concerning virtual reality technique and less self-confident in using it.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Gruzelier, J.H.: EEG-neurofeedback for optimising performance. I: a review of cognitive and affective outcome in healthy participants. Neurosci. Biobehav. Rev. 44, 124–141 (2014)
Hofer, D., Kober, S.E., Reichert, J., Krenn, M., Farveleder, K., Grieshofer, P., Neuper, C., Wood, G.: Spezifische Effekte von EEG basiertem Neurofeedbacktraining auf kognitive Leistungen nach einem Schlaganfall. Ein nutzvolles Werkzeug für die Rehabilitation? Lernen und Lernstörungen 3, 1–19 (2014)
Kober, S.E., Schweiger, D., Witte, M., Reichert, J.L., Grieshofer, P., Neuper, C., Wood, G.: Specific effects of EEG based neurofeedback training on memory functions in post-stroke victims. J. Neuroeng. Rehabil. 12, 107 (2015)
Reichert, J.L., Kober, S.E., Schweiger, D., Grieshofer, P., Neuper, C., Wood, G.: shutting down sensorimotor interferences after stroke. a proof-of-principle SMR neurofeedback study. Front. Hum. Neurosci. 10, 110 (2016)
Cho, B.-H., Kim, S., Shin, D.I., Lee, J.H., Lee, S.M., Kim, I.Y., Kim, S.I.: Neurofeedback training with virtual reality for inattention and impulsiveness. Cyberpsychol. Behav. 7(5), 519–526 (2004). The Impact of the Internet, Multimedia and Virtual Reality on Behavior and Society
Arns, M., de Ridder, S., Strehl, U., Breteler, M., Coenen, T.: Efficacy of neurofeedback treatment in ADHD: the effects on inattention, impulsivity and hyperactivity: a meta-analysis. Clin. EEG Neurosci. 40(3), 180–189 (2009)
Tan, G., Thornby, J., Hammond, D.C., Strehl, U., Canady, B., Arnemann, K., Kaiser, D.A.: Meta-analysis of EEG biofeedback in treating epilepsy. Clin. EEG Neurosci. 40(3), 173–179 (2009)
Strehl, U. (ed.): Neurofeedback Theoretische Grundlagen - Praktisches Vorgehen - Wissenschaftliche Evidenz. Kohlhammer, Stuttgart (2013)
Ninaus, M., Kober, S., Witte, M., Koschutnig, K., Stangl, M., Neuper, C., Wood, G.: Neural substrates of cognitive control under the belief of getting neurofeedback training. Front. Hum. Neurosci. 7(914), 1–10 (2013)
Ninaus, M., Kober, S., Witte, M., Koschutnig, K., Neuper, C., Wood, G.: Brain volumetry and self-regulation of brain activity relevant for neurofeedback. Biol. Psychol. 110, 126–133 (2015)
Wood, G., Kober, S.E., Witte, M., Neuper, C.: On the need to better specify the concept of “control” in brain-computer-interfaces/neurofeedback research. Front. Syst. Neurosci. 8, 171 (2014)
Emmert, K., Kopel, R., Sulzer, J., Brühl, A.B., Berman, B.D., Linden, D.E., Horovitz, S.G., Breimhorst, M., Caria, A., Frank, S., Johnston, S., Long, Z., Paret, C., Robineau, F., Veit, R., Bartsch, A., Beckmann, C.F., van de Ville, D., Haller, S.: Meta-analysis of real-time fMRI neurofeedback studies using individual participant data: How is brain regulation mediated? NeuroImage 124, 806–812 (2016)
Gaume, A., Vialatte, A., Mora-Sánchez, A., Ramdani, C., Vialatte, F.B.: A psychoengineering paradigm for the neurocognitive mechanisms of biofeedback and neurofeedback. Neurosci. Biobehav. Rev. 68, 891–910 (2016)
Yan, N., Wang, J., Liu, M., Zong, L., Jiao, Y., Yue, J., Lv, Y., Yang, Q., Lan, H., Liu, Z.: Designing a brain-computer interface device for neurofeedback using virtual environments. J. Med. Biol. Eng. 28(3), 167–172 (2008)
Kleih, S., Nijboer, F., Halder, S., Kübler, A.: Motivation modulates the P300 amplitude during brain–computer interface use. Clin. Neurophysiol. 121(7), 1023–1031 (2010)
Harris, K., Reid, D.: The influence of virtual reality play on children’s motivation. Can. J. Occup. Ther. 72(1), 21–29 (2005)
Benedetti, F., Catenacci Volpi, N., Parisi, L., Sartori, G.: Attention training with an easy–to–use brain computer interface. In: Shumaker, R., Lackey, S. (eds.) VAMR 2014. LNCS, vol. 8526, pp. 236–247. Springer, Heidelberg (2014). doi:10.1007/978-3-319-07464-1_22
Aart, J. v., Klaver, E., Bartneck, C., Feijs, L., Peters, P.: EEG headset for neurofeedback therapy - enabling easy use in the home environment. In: Proceedings of the Biosignals - International Conference on Bio-inspired Signals and Systems, Funchal, pp. 23–30 (2008)
Lécuyer, A., Lotte, F., Reilly, R.B., Leeb, R., Hirose, M., Slater, M.: Brain-computer interfaces, virtual reality, and videogames. Computer 41(10), 66–72 (2008)
Ron-Angevin, R., Daz Estrella, A., Reyes-Lecuona, A.: Development of a brain-computer interface (BCI) based on virtual reality to improve training techniques. In: Applied Technologies in Medicine and Neuroscience, pp. 13–20 (2005)
Leeb, R., Lee, F., Keinrath, C., Scherer, R., Bischof, H., Pfurtscheller, G.: Brain-computer communication: motivation, aim, and impact of exploring a virtual apartment. IEEE Trans. Neural Syst. Rehabil. Eng. 15(4), 473–482 (2007). A Publication of the IEEE Engineering in Medicine and Biology Society
Friedman, D., Leeb, R., Guger, C., Steed, A., Pfurtscheller, G., Slater, M.: Navigating virtual reality by thought: what is it like? presence Teleoper. Virtual Environ. 16(1), 100–110 (2007)
Gruzelier, J., Inoue, A., Smart, R., Steed, A., Steffert, T.: Acting performance and flow state enhanced with sensory-motor rhythm neurofeedback comparing ecologically valid immersive VR and training screen scenarios. Neurosci. Lett. 480(2), 112–116 (2010)
Mercier-Ganady, J., Lotte, F., Loup-Escande, E., Marchal, M., Lecuyer, A.: The Mind-Mirror: see your brain in action in your head using EEG and augmented reality. In: 2014 IEEE Virtual Reality (VR), Minneapolis, MN, USA, pp. 33–38 (2014)
Bayliss, J.D.: Use of the evoked potential P3 component for control in a virtual apartment. IEEE Trans. Neural Syst. Rehabil. Eng. 11(2), 113–116 (2003). A Publication of the IEEE Engineering in Medicine and Biology Society
Rose, F.D., Brooks, B.M., Rizzo, A.A.: Virtual reality in brain damage rehabilitation: review. Cyberpsychol. Behav. 8(3), 241–262 (2005). The Impact of the Internet, Multimedia and Virtual Reality on Behavior and Society
Marzbani, H., Marateb, H.R., Mansourian, M.: Neurofeedback: a comprehensive review on system design, methodology and clinical applications. Basic Clin. Neurosci. 7(2), 143–158 (2016)
Burdea, G.: Virtual rehabilitation: benefits and challenges. Methods Inf. Med. 42(5), 519–523 (2003)
Morganti, F.: Virtual interaction in cognitive neuropsychology. Stud. Health Technol. Inform. 99, 55–70 (2004)
Brooks, J.O., Goodenough, R.R., Crisler, M.C., Klein, N.D., Alley, R.L., Koon, B.L., Logan Jr., W.C., Ogle, J.H., Tyrrell, R.A., Wills, R.F.: Simulator sickness during driving simulation studies. Accid. Anal. Prev. 42(3), 788–796 (2010)
Cameirão, M., Bermúdezi Badia, S., Zimmerli, L., Oller, E.D., Verschure, P.: A virtual reality system for motor and cognitive neurorehabilitation. Chall. Assist. Technol. 20, 393–397 (2007)
Rizzolatti, G., Craighero, L.: The mirror-neuron system. Annu. Rev. Neurosci. 27, 169–192 (2004). doi:10.1146/annurev.neuro.27.070203.144230
Mulder, T.: Motor imagery and action observation: cognitive tools for rehabilitation. J. Neural Transm. 114(10), 1265–1278 (2007)
Sollfrank, T., Hart, D., Goodsell, R., Foster, J., Tan, T.: 3D visualization of movements can amplify motor cortex activation during subsequent motor imagery. Front. Hum. Neurosci. 9, 463 (2015)
Hwang, H.-J., Kwon, K., Im, C.-H.: Neurofeedback-based motor imagery training for brain–computer interface (BCI). J. Neurosci. Methods 179(1), 150–156 (2009)
Arrouet, C., Congedo, M., Marvie, J.E., Lamarche, F., Lécuyer, A., Arnaldi, B.: Open-ViBE: a 3D platform for real-time neuroscience. J. Neurother. 9(1), 3–25 (2005)
Kessler, J., Markowitsch, H.J., Denzler, P.: Mini Mental Status Examination MMSE. German Version. Beltz, Weinheim (1990)
Klimesch, W.: EEG alpha and theta oscillations reflect cognitive and memory performance: a review and analysis. Brain Res. Brain Res. Rev. 29(2–3), 169–195 (1999)
Bounias, M., Laibow, R.E., Bonaly, A., Stubblebine, A.N.: EEG-neurobiofeedback treatment of patients with brain injury: part 1: typological classification of clinical syndromes. J. Neurother. 5(4), 23–44 (2002)
Rheinberg, F., Vollmeyer, R., Burns, B.D.: FAM: Ein Fragebogen zur Erfassung aktuller Motivation in Lern- und Leistungssituationen. Diagnostica 47(2), 57–66 (2001)
Kennedy, R.S., Lane, N.E., Berbaum, K.S., Lilienthal, M.G.: Simulator sickness questionnaire: an enhanced method for quantifying simulator sickness. Int. J. Aviat. Psychol. 3(3), 203–220 (1993)
Crawford, J.R., Garthwaite, P.H.: Statistical methods for single-case studies in neuropsychology: comparing the slope of a patient’s regression line with those of a control sample. Cortex 40(3), 533–548 (2004). A Journal Devoted to the Study of the Nervous System and Behavior
Crawford, J., Garthwaite, P.H.: Investigation of the single case in neuropsychology: confidence limits on the abnormality of test scores and test score differences. Neuropsychologia 40, 1196–1208 (2002)
Kober, S.E., Witte, M., Stangl, M., Valjamae, A., Neuper, C., Wood, G.: Shutting down sensorimotor interference unblocks the networks for stimulus processing: an SMR neurofeedback training study. Clin. Neurophysiol. 126(1), 82–95 (2015)
Wagner, N., Hassanein, K., Head, M.: Computer use by older adults: a multi-disciplinary review. Comput. Hum. Behav. 26(5), 870–882 (2010). Advancing Educational Research on Computer-supported Collaborative Learning (CSCL) through the use of gStudy CSCL Tools
Acknowledgments
This work was partially supported by the European STREP Program – Collaborative Project no. FP7-287320 – CONTRAST and by BioTechMed-Graz, Austria. Possible inaccuracies of information are under the responsibility of the project team. The text reflects solely the views of its authors. The European Commission is not liable for any use that may be made of the information contained therein. The authors are grateful to T-Systems ITC Iberia for technical support.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Kober, S.E., Reichert, J.L., Schweiger, D., Neuper, C., Wood, G. (2016). Effects of a 3D Virtual Reality Neurofeedback Scenario on User Experience and Performance in Stroke Patients. In: Bottino, R., Jeuring, J., Veltkamp, R. (eds) Games and Learning Alliance. GALA 2016. Lecture Notes in Computer Science(), vol 10056. Springer, Cham. https://doi.org/10.1007/978-3-319-50182-6_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-50182-6_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-50181-9
Online ISBN: 978-3-319-50182-6
eBook Packages: Computer ScienceComputer Science (R0)