TrueGrid: Code the Table, Tabulate the Data

Felienne Hermans'2(®) and Tijs van der Storm"2

L TU Delft, Delft, The Netherlands
f.f.j.hermans@tudelft.nl
2 CWI, Amsterdam, The Netherlands
storm@cwi.nl

Abstract. Spreadsheet systems are live programming environments.
Both the data and the code are right in front you, and if you edit either
of them, the effects are immediately visible. Unfortunately, spreadsheets
lack mechanisms for abstraction, such as classes, function definitions etc.
Programming languages excel at abstraction, but most mainstream lan-
guages or integrated development environments (IDEs) do not support
the interactive, live feedback loop of spreadsheets. As a result, exploring
and testing of code is cumbersome and indirect.

In this paper we propose a method to bring both worlds closer
together, by juxtaposing ordinary code and spreadsheet-like grids in
the IDE, called TrueGrid. Using TrueGrid spreadsheet cells can be pro-
grammed with a fully featured programming language. Spreadsheet users
then may enjoy benefits of source code, including added abstractions,
syntax highlighting, version control, etc. On the other hand, program-
mers may leverage the grid for interactive exploring and testing of code.
We illustrate these benefits using a prototype implementation of True-
Grid that runs in the browser and uses Javascript as a programming
language.

1 Introduction

Spreadsheets are very popular tools for end-user programming. Their formula
language is easy to learn and their grid interface is inviting. Apart from this,
spreadsheets are live: the user interface reacts immediately to changes in input
or code. Live programming helps bridging the gulf between code and behavior
because the user receives immediate feedback on their actions [8]. More recently,
live programming has found its way to a wider audience, for instance, by Bret
Victor’s influential talk Inventing on Principle [11]. Figure 1, taken from Victor’s
talk, illustrates the idea of live programming: on the right, we have source code
and on the left, we have the result of that code, in this case, a tree drawing.
Modifying the code will immediately affect the visual representation of the tree.

This liveness is one of the core features of most spreadsheet systems. When
a users enters a formula and presses enter, they see the result, without a lengthy
edit-compile-run cycle. This live characteristic of spreadsheets is often praised
as their key success factor [3].

© Springer International Publishing AG 2016
P. Milazzo et al. (Eds.): STAF 2016, LNCS 9946, pp. 388-393, 2016.
DOI: 10.1007/978-3-319-50230-4_29

TrueGrid: Code the Table, Tabulate the Data 389

drawsky!();
drawountains () ;

sky

unction drawsky () {
ctx. save

var gradient = ctx.createLinearGradient(0,0,0, canvasheight) ;
gradient.addColorStop(9, “sbdedfe");
gradient.addColorStop(1, "#d3fff");

ctx. fillStyle = gradient;
ctx. fillRect (0,0, canvasWidth, canvashieight) ;

ctx restorej);

mountains
unction drawMountains ()
resetRandon() ;

awMountain(130, “#8bb2bb");
drawMountain(5e, “#618087");

Fig. 1. Live programming: on the right the source code and on the left its instantiation
of the code which changes immediately when the code is updated, screenshot from [11].

However, spreadsheets have a number of downsides too. For instance, the lack
of abstraction mechanisms forces spreadsheet users to use copy-paste for reusing
code. Although solutions to this problem have been researched [4,6], they do not
provide the power of full programming languages to spreadsheet users. Secondly,
the way formulas are edited in a spreadsheet system like Excel has important
drawbacks from the programming perspective. For instance, Excel’s formula edi-
tor lacks even the basic editor services, such as syntax highlighting and reference
resolution. In general, the interface is not inviting to apply proper coding styles
and practices. Another disadvantage of embedding the code within the sheet
itself is that it prohibits versioning and sharing of the formulas separately from
the data.

On the other hand, there is source code. All existing programming lan-
guages support abstraction, and modern editors help developers understand and
structure their code. However, mainstream integrated development environments
(IDE) lack the live and interactive style of interaction so coveted by spreadsheet
users.

In this paper, we will describe TrueGrid, a light-weight approach to bridging
the gap between programming and spreadsheets and describe ts implications in
both worlds. The basic concept of TrueGrid is to allow a spreadsheet like grid
to be programmed using a full featured programming language, in a consistent
user interface. Figure 2 shows this idea as implemented in our prototype. The
key charactertistic is that developers see the code and data at the same time.
Furthermore, like a spreadsheet, TrueGrid is live, i.e. on a change of data or code,
the grid is updated. In our example, we use JavaScript as a language, however,
the idea itself is not limited to a single programming language.

In the next section we explore the implication of the TrueGrid user inter-
face for spreadsheet users. Section 3 explores TrueGrid from the perspective of
programmers. In particular we discuss conventions for relating code to the grid
view.

390 F. Hermans and T. van der Storm

1l

2~ function multiply(inputl, input2) { input1 input2 multiply
3 return inputl * input2;

4} 1 3 ?

5

6 v function aBitMore(inputl, multiply) { 2 5 n

7 return multiply+inputl;)

8 }

H 2 7 ?

Fig.2. A True Grid implementation, with the code editor on the left hand side and
the grid on the righ, available via http://www.felienne.com/TrueGrid/

2 TrueGrid for Spreadsheet Users

As an implementation of TrueGrid for spreadsheet users, we hypothesize that
existing spreadsheet system could be extended with a source code editor view,
next to the grid-based view of the data. This allows users to use advanced fea-
tures like PivotTables and charts on top of their TrueGrid, but also use pro-
fessional IDE services for expressing computations. For spreadsheet users, using
TrueGrid over spreadsheets presents several benefits. For example, the use of a
professional editor supports the developer with editor services like syntax high-
lighting and error marking. Furthermore, the textual form of the code allows
for easy diffing and merging, enabling more mature version control on spread-
sheets. While learning a new programming language can be challenging, there
are spreadsheet developers working with VBA now, which is a fully featured
language. Unfortunately the integration between the code and a spreadsheet is
low level and cumbersome. We envision TrueGrid having a less steep learning
curve, because code and data are juxtaposed.

As an example consider the simple grade book sheet shown in Fig. 3. It shows
the actual data (both provided and computed) in the grid. The average and
class average are expressed using ordinary Javascript functions. The TrueGrid
environment links functions or methods to the cells in the grid using a naming
convention. For instance, a function starting with the column_ prefix computes a

function column_avg(row) {

return (row.lab + row.exam) / 2; lstudent[lab[exam[avg ‘
} Rich [7] 8 75
Jacome| 8 | 9 8.5
function cell_classAvg(col, row) { Birgit [9| 9 9
return sum(col) / col.length; classAvg: 8.3

}

Fig. 3. Mockup of TrueGrid for spreadsheet use

http://www.felienne.com/TrueGrid/

TrueGrid: Code the Table, Tabulate the Data 391

complete column, given a particular row (an ordinary Javascript object). This is
used in the computation of the avg column, where each cell contains the average
of the lab and exam cells. The model also allows naming individual cells. This
is illustrated in the function cell_classAvg. The function receives the current
column (col, a Javascript array), and the current row. Based on the elements in
the column the class average is computed.

One could imagine linking the code to the grid using row and column coor-
dinates, just like ordinary spreadsheet formulas refer to (ranges of) rows and
columns. However, this would lead to code that is not very intuitive if read sep-
arately. Furthermore, insertion of rows and columns in the grid would require
updating the source code itself, similar to how spreadsheet systems realign cell
coordinates.

3 TrueGrid for Developers

Like spreadsheet users, developers often work with (example) data when pro-
gramming. For instance, developers use read-eval-print-loops (REPLS) to explore
the behavior of a function. Another use case is developer testing which requires
setting up test fixtures and inspecting the results. Both these use cases, however,
suffer from a lack of immediacy. After a change to the code, the developer needs
to reenter expressions in the REPL to observe expected changes in behavior.
Similar for testing: reexecuting the test is an explicit step after every change
to the code. TrueGrid eliminates these hickups and promises a more fluent, live
experience.

In particular, TrueGrid can be seen as a persistent REPL, where expressions
or method invocations are continuously evaluated, after every change to the
code or input data. Consider the example shown in Fig.4. On the left is a
simple Javascript function for left-padding values with spaces or other padding
characters. Using TrueGrid, the programmer can provide example data in the
grid and explore the implementation. This can be especially valuable early in
the development process when you have some data and only a vague idea of how
certain functionality should be implemented.

function leftpad(str, len, ch) {
str = String(str);

var i = -1;

if (!'ch &% ch !'== 0) ch = ’ 7; lfunction[0 [1 [2 [Result

len = len - str.length; leftpad | "foo" |5 " foo"

while (++i < len) { leftpad |" foobar” |6 " foobar”
str = ch + str; leftpad 1 2 |0 "01"

}

return str;

}

Fig. 4. Exploring function behavior using TrueGrid

392 F. Hermans and T. van der Storm

From the testing perspective, TrueGrid provides a kind of “FIT testing on
steroids” [9], where the grid functions as a live dashboard of test success and
failure. In this case, the grid shown in Fig. 4 could have an additional column indi-
cating the success or failure of the function execution, or use green/red coloring
of rows to the same effect. Again, the success indicators would be automatically
updated upon changing the source code on left.

4 Related Work

This work is positioned at the intersection of end-user programming and profes-
sional software development [7]. The particular link between software engineering
and spreadsheets has been explored before. For instance, Cunha et al. present
model-based programming environments for spreadsheets [2]. The focus of this
work is to improve reliability of spreadsheet engineering by applying model-
driven techniques. In this work we primarily focus on improving programmer
experience.

Integrating spreadsheet-based user interfaces with code editors leads to a
simple form of a heterogeneous programming environment (e.g., [10]), originally
pioneered in the work on structure editors, and recently popularized by the
Jetbrains Meta Programming System [5]. Although this kind of work aims for
a much more invasive integration, it is in line with the goal of having the best
user interface for each aspect of the programming experience. A similar strand
of research is explored in the context of DSLs by Adam and Schultz [1].

5 Conclusion and Outlook

Spreadsheets are live programming environments. However, their lack of abstrac-
tion mechanisms and editor support are impediments to professional spreadsheet
development. Conversely, traditional programming environments lack the con-
tinuous feedback that makes spreadsheets so attractive. In this paper we have
presented TrueGrid, a user interface design combining code editing and grid-
based data view, with a live execution model.

TrueGrid presents a promising bridge between the domain of spreadsheets
and software development. It has the potential to improve end-user programming
experience from two perspectives:

— For spreadsheet users: computations are expressed using program code, instead
of formulas in cells, so that end-users may enjoy both abstraction and liveness
at the same time.

— For professional developers: spreadsheet-like grids support live exploration and
testing of code, without explicitly invoking test scripts of entering expressions
in a REPL.

TrueGrid: Code the Table, Tabulate the Data 393

We have implemented a prototype of TrueGrid which runs in the browser, using
Javascript as the programming language. Further research is needed to empiri-
cally investigate the benefits of TrueGrid from both the programmer and spread-
sheet user perspectives. We expect that TrueGrid provides a fruitful vehicle for
exploring the middle ground between end-user programming on the one hand
side, and professional software development on the other.

References

10.

11.

. Adam, S., Schultz, U.P.: Towards tool support for spreadsheet-based domain-

specific languages. In: Proceedings of the 2015 ACM SIGPLAN International Con-
ference on Generative Programming: Concepts and Experiences, pp. 95-98. ACM
(2015)

Cunha, J., Mendes, J., Saraiva, J., Visser, J.: Model-based programming environ-
ments for spreadsheets. Sci. Comput. Program. 96, 254-275 (2014)

Hermans, F.: Analyzing and Visualizing Spreadsheets. Ph.D. thesis, Delft Univer-
sity of Technology (2013)

Hermans, F., van der Storm, T.: Copy-paste tracking: fixing spreadsheets without
breaking them. In: Proceedings of the International Conference on Live Coding
(2015)

Jetbrains: Meta programming system (2016). https://www.jetbrains.com/mps/
Jones, S.P., Blackwell, A., Burnett, M.: A user-centred approach to functions in
excel. ACM SIGPLAN Not. 38(9), 165-176 (2003)

Ko, A.J., Abraham, R., Beckwith, L., Blackwell, A.F., Burnett, M.M., Erwig, M.,
Scaffidi, C., Lawrance, J., Lieberman, H., Myers, B.A., Rosson, M.B., Rothermel,
G., Shaw, M., Wiedenbeck, S.: The state of the art in end-user software engineer-
ing. ACM Comput. Surv. 43(3), 21 (2011). http://doi.acm.org/10.1145/1922649.
1922658

Lieberman, H., Fry, C.: Bridging the gulf between code and behavior in program-
ming. In: Proceedings of the SIGCHI Conference on Human Factors in Computing
Systems, CHI 1995, pp. 480-486. ACM Press/Addison-Wesley Publishing Co., New
York (1995). http://dx.doi.org/10.1145/223904.223969

Mugridge, R., Cunningham, W.: Fit for Developing Software: Framework for Inte-
grated Tests. Prentice Hall, Englewood Cliffs (2005)

Schrage, M.M., Swierstra, S.D.: Beyond ASCII - parsing programs with graphical
presentations. J. UCS 14(21), 3414-3430 (2008)

Victor, B.: Inventing on principle (2012). http://vimeo.com/36579366

https://www.jetbrains.com/mps/
http://doi.acm.org/10.1145/1922649.1922658
http://doi.acm.org/10.1145/1922649.1922658
http://dx.doi.org/10.1145/223904.223969
http://vimeo.com/36579366

	TrueGrid: Code the Table, Tabulate the Data
	1 Introduction
	2 TrueGrid for Spreadsheet Users
	3 TrueGrid for Developers
	4 Related Work
	5 Conclusion and Outlook
	References

