Abstract
Recently, a new classification of nonlinear dynamics has been introduced by Leonov and Kuznetsov, in which two kinds of attractors are concentrated, i.e. self-excited and hidden ones. Self-excited attractor has a basin of attraction excited from unstable equilibria. So, from that point of view, most known systems, like Lorenz’s system, Rössler’s system, Chen’s system, or Sprott’s system, belong to chaotic systems with self-excited attractors. In contrast, a few unusual systems such as those with a line equilibrium, with stable equilibria, or without equilibrium, are classified into chaotic systems with hidden attractor. Studying chaotic system with hidden attractors has become an attractive research direction because hidden attractors play an important role in theoretical problems and engineering applications. This chapter presents a three-dimensional autonomous system without any equilibrium point which can generate hidden chaotic attractor. The fundamental dynamics properties of such no-equilibrium system are discovered by using phase portraits, Lyapunov exponents, bifurcation diagram, and Kaplan–Yorke dimension. Chaos synchronization of proposed systems is achieved and confirmed by numerical simulation. In addition, an electronic circuit is implemented to evaluate the theoretical model. Finally, fractional-order form of the system with no equilibrium is also investigated.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Aguilar-Lopez, R., Martinez-Guerra, R., & Perez-Pinacho, C. (2014). Nonlinear observer for synchronization of chaotic systems with application to secure data transmission. European Physics Journal Special Topics, 223, 1541–1548.
Akgul, A., Moroz, I., Pehlivan, I., & Vaidyanathan, S. (2016). A new four-scroll chaotic attractor and its enginearing applications. Optik, 127, 5491–5499.
Akopov, A., Astakhov, V., Vadiasova, T., Shabunin, A., & Kapitaniak, T. (2005). Frequency synchronization in clusters in coupled extended systems. Physics Letters A, 334, 169–172.
Arneodo, A., Coullet, P., & Tresser, C. (1981). Possible new strange attractors with spiral structure. Communications in Mathematical Physics, 79, 573–579.
Azar, A. T., & Vaidyanathan, S. (2015a). Chaos modeling and control systems design. Germany: Springer.
Azar, A. T., & Vaidyanathan, S. (2015b). Computational intelligence applications in modeling and control. Germany: Springer.
Azar, A. T., & Vaidyanathan, S. (2015c). Handbook of research on advanced intelligent control engineering and automation. USA: IGI Global.
Azar, A. T., & Vaidyanathan, S. (2016). Advances in chaos theory and intelligent control. Germany: Springer.
Bagley, R. L., & Calico, R. A. (1991). Fractional-order state equations for the control of visco-elastically damped structers. Journal of Guidance, Control, and Dyanmics, 14, 304–311.
Barakat, M., Mansingka, A., Radwan, A. G., & Salama, K. N. (2013). Generalized hardware post processing technique for chaos-based pseudorandom number generators. ETRI Journal, 35, 448–458.
Barnerjee, T., Biswas, D., & Sarkar, B. C. (2012). Design and analysis of a first order time-delayed chaotic system. Nonlinear Dynamics, 70, 721–734.
Boccaletti, S., Kurths, J., Osipov, G., Valladares, D. L., & Zhou, C. S. (2002). The synchronization of chaotic systems. Physics Reports, 366, 1–101.
Bouali, S., Buscarino, A., Fortuna, L., Frasca, M., & Gambuzza, L. V. (2012). Emulating complex business cycles by using an electronic analogue. Nonlinear Analysis: Real World Applications, 13, 2459–2465.
Boulkroune, A., Bouzeriba, A., Bouden, T., & Azar, A. T. (2016a). Fuzzy adaptive synchronization of uncertain fractional-order chaotic systems. In A. T. Azar & S. Vaidyanathan (Eds.), Advances in Chaos Theory and Intelligent Control Studies in Fuzziness and Soft Computing (Vol. 337, pp. 681–697). Germany: Springer.
Boulkroune, A., Hamel, S., & Azar, A. T. (2016b). Fuzzy control-based function synchronization of unknown chaotic systems with dead-zone input. In A. T. Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control Studies in fuzziness and soft computing (Vol. 337, pp. 699–718). Germany: Springer.
Brezetskyi, S., Dudkowski, D., & Kapitaniak, T. (2015). Rare and hidden attractors in van der pol-duffing oscillators. European Physics Journal Special Topics, 224, 1459–1467.
Buscarino, A., Fortuna, L., & Frasca, M. (2009). Experimental robust synchronization of hyperchaotic circuits. Physica D, 238, 1917–1922.
Chen, G., & Ueta, T. (1999). Yet another chaotic attractor. International Journal of Bifurcation and Chaos, 9, 1465–1466.
Chen, G., & Yu, X. (2003). Chaos control: theory and applications. Berlin: Springer.
Diethelm, K., Ford, N. J., & Freed, A. D. (2002). A predictor-corrector approach for the numerical solution of fractional differential equations. Nonlinear Dynamics, 29, 3–22.
Fortuna, L., & Frasca, M. (2007). Experimental synchronization of single-transistor-based chaotic circuits. Chaos, 17, 043118-1–5.
Fortuna, L., Frasca, M., & Xibilia, M. G. (2009). Chua’s circuit implementation: Yesterday. World Scientific, Singapore: Today and Tomorrow.
Frederickson, P., Kaplan, J. L., Yorke, E. D., & York, J. (1983). The lyapunov dimension of strange attractors. Journal of Differential Equations, 49, 185–207.
Gamez-Guzman, L., Cruz-Hernandez, C., Lopez-Gutierrez, R., & Garcia-Guerrero, E. E. (2009). Synchronization of chua’s circuits with multi-scroll attractors: Application to communication. Communications in Nonlinear Science and Numerical Simulation, 14, 2765–2775.
Gejji, D., & Jafari, H. (2005). Adomian decomposition: A tool for solving a system of fractional differential equations. Journal of Mathematical Analysis and Applications, 301, 508–518.
Grigorenko, I., & Grigorenko, E. (2003). Chaotic dynamics of the fractional-order lorenz system. Physics Review Letters, 91, 034101.
Han, F., Hu, J., Yu, X., & Wang, Y. (2007). Fingerprint images encryption via multi-scroll chaotic attractors. Applied Mathematics and Computing, 185, 931–939.
Hartley, T. T., Lorenzo, C. F., & Qammer, H. K. (1995). Chaos on a fractional Chua’s system. IEEE Transactions on Circuits System I: Fundamental Theory and Applications, 42, 485–490.
Heaviside, O. (1971). Electromagnetic theory. New York, USA: Academic Press.
Hoang, T. M., & Nakagawa, M. (2007). Anticipating and projective–anticipating synchronization of coupled multidelay feedback systems. Physics Letters A, 365, 407–411.
Hoang, T. M., & Nakagawa, M. (2008). A secure communication system using projective-lag and/or projective-anticipating synchronizations of coupled multidelay feedback systems. Chaos, Solitons & Fractals, 38, 1423–1438.
Huang, Y., Wang, Y., Chen, H., & Zhang, S. (2016). Shape synchronization control for three-dimensional chaotic systems. Chaos, Solitons & Fractals, 87, 136–145.
Jafari, S., & Sprott, J. C. (2013). Simple chaotic flows with a line equilibrium. Chaos, Solitons & Fractals, 57, 79–84.
Jafari, S., Sprott, J. C., & Golpayegani, S. M. R. H. (2013). Elementary quadratic chaotic flows with no equilibria. Physics Letters A, 377, 699–702.
Jafari, S., Sprott, J. C., & Nazarimehr, F. (2015). Recent new examples of hidden attractors. European Physics Journal Special Topics, 224, 1469–1476.
Jenson, V. G., & Jeffreys, G. V. (1997). Mathematical methods in chemical enginerring. New York, USA: Academic Press.
Kajbaf, A., Akhaee, M. A., & Sheikhan, M. (2016). Fast synchronization of non-identical chaotic modulation-based secure systems using a modified sliding mode controller. Chaos, Solitons & Fractals, 84, 49–57.
Kapitaniak, T. (1994). Synchronization of chaos using continuous control. Physical Review E, 50, 1642–1644.
Karthikeyan, R., & Vaidyanathan, S. (2014). Hybrid chaos synchronization of four-scroll systems via active control. Journal of Electrical Engineering, 65, 97–103.
Khalil, H. (2002). Nonlinear systems. New Jersey, USA: Prentice Hall.
Kuznetsov, N. V., Leonov, G. A., & Seledzhi, S. M. (2011). Hidden oscillations in nonlinear control systems. IFAC Proceedings, 18, 2506–2510.
Leonov, G. A., & Kuznetsov, N. V. (2011a). Algorithms for searching for hidden oscillations in the Aizerman and Kalman problems. Doklady Mathematics, 84, 475–481.
Leonov, G. A., & Kuznetsov, N. V. (2011b). Analytical–numerical methods for investigation of hidden oscillations in nonlinear control systems. IFAC Proceedings, 18, 2494–2505.
Leonov, G. A., & Kuznetsov, N. V. (2013). Hidden attractors in dynamical systems: From hidden oscillation in Hilbert-Kolmogorov, Aizerman and Kalman problems to hidden chaotic attractor in Chua circuits. International Journal of Bifurcation and Chaos, 23, 1330002.
Leonov, G. A., Kuznetsov, N. V., Kiseleva, M. A., Solovyeva, E. P., & Zaretskiy, A. M. (2014). Hidden oscillations in mathematical model of drilling system actuated by induction motor with a wound rotor. Nonlinear Dynamics, 77, 277–288.
Leonov, G. A., Kuznetsov, N. V., Kuznetsova, O. A., Seldedzhi, S. M., & Vagaitsev, V. I. (2011a). Hidden oscillations in dynamical systems. Transactions on Systems and Control, 6, 54–67.
Leonov, G. A., Kuznetsov, N. V., & Vagaitsev, V. I. (2011b). Localization of hidden Chua’s attractors. Physics Lett. A, 375, 2230–2233.
Leonov, G. A., Kuznetsov, N. V., & Vagaitsev, V. I. (2012). Hidden attractor in smooth Chua system. Physica D, 241, 1482–1486.
Li, C. P., & Peng, G. J. (2004). Chaos in Chen’s system with a fractional-order. Chaos, Solitons & Fractals, 20, 443–450.
Lorenz, E. N. (1963). Deterministic non-periodic flow. Journal of Atmospheric Science, 20, 130–141.
Lü, J., & Chen, G. (2002). A new chaotic attractor coined. International Journal of Bifurcation and Chaos, 12, 659–661.
Ojoniyi, O. S., & Njah, A. N. (2016). A 5D hyperchaotic Sprott B system with coexisting hidden attractor. Chaos, Solitons & Fractals, 87, 172–181.
Pecora, L. M., & Carroll, T. L. (1990). Synchronization in chaotic signals. Physics Review A, 64, 821–824.
Pham, V.-T., Jafari, S., Volos, C., Wang, X., & Golpayegani, S. M. R. H. (2014a). Is that really hidden? The presence of complex fixed-points in chaotic flows with no equilibria. International Journal of Bifurcation and Chaos, 24, 1450146.
Pham, V.-T., Vaidyanathan, S., Volos, C. K., Hoang, T. M., & Yem, V. V. (2016). Dynamics, synchronization and SPICE implementation of a memristive system with hidden hyperchaotic attractor. In A. T. Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control Studies in Fuzziness and Soft Computing (Vol. 337, pp. 35–52). Germany: Springer.
Pham, V. T., Vaidyanathan, S., Volos, C. K., & Jafari, S. (2015a). Hidden attractors in a chaotic system with an exponential nonlinear term. European Physics Journal Special Topics, 224, 1507–1517.
Pham, V.-T., Volos, C., & Gambuzza, L. V. (2014). A memristive hyperchaotic system without equilibrium. Scientific World Journal, 2014, 368986.
Pham, V.-T., Volos, C., & Vaidyanathan, S. (2015b). Multi-scroll chaotic oscillator based on a first-order delay differential equation. In A. T. Azar & S. Vaidyanathan (Eds.), Chaos modelling and control systems design Studies in Computational Intelligence (Vol. 581, pp. 59–72). Germany: Springer.
Pham, V.-T., Volos, C. K., Jafari, S., Wei, Z., & Wang, X. (2014c). Constructing a novel no-equilibrium chaotic system. International Journal of Bifurcation and Chaos, 24, 1450073.
Rosenblum, M. G., Pikovsky, A. S., & Kurths, J. (1997). From phase to lag synchronization in coupled chaotic oscillators. Physics Review Letters, 78, 4193–4196.
Rössler, O. E. (1976). An equation for continuous chaos. Physics Letters A, 57, 397–398.
Sadoudi, S., Tanougast, C., Azzaz, M. S., & Dandache, A. (2013). Design and FPGA implementation of a wireless hyperchaotic communication system for secure realtime image transmission. EURASIP Journal of Image and Video Processing, 943, 1–18.
Sastry, S. (1999). Nonlinear systems: Analysis, stability, and control. USA: Springer.
Shahzad, M., Pham, V. T., Ahmad, M. A., Jafari, S., & Hadaeghi, F. (2015). Synchronization and circuit design of a chaotic system with coexisting hidden attractors. European Physics Journal Special Topics, 224, 1637–1652.
Sharma, P. R., Shrimali, M. D., Prasad, A., Kuznetsov, N. V., & Leonov, G. A. (2015). Control of multistability in hidden attractors. European Physics Journal Special Topics, 224, 1485–1491.
Shilnikov, L. P., Shilnikov, A. L., Turaev, D. V., & Chua, L. O. (1998). Methods of qualitative theory in nonlinear dynamics. Singapore: World Scientific.
Sprott, J. C. (2003). Chaos and times-series analysis. Oxford: Oxford University Press.
Sprott, J. C. (2010). Elegant chaos: Algebraically simple chaotic flows. Singapore: World Scientific.
Sprott, J. C. (2015). Strange attractors with various equilibrium types. European Physics Journal Special Topics, 224, 1409–1419.
Srinivasan, K., Senthilkumar, D. V., Murali, K., Lakshmanan, M., & Kurths, J. (2011). Synchronization transitions in coupled time-delay electronic circuits with a threshold nonlinearity. Chaos, 21, 023119.
Stefanski, A., Perlikowski, P., & Kapitaniak, T. (2007). Ragged synchronizability of coupled oscillators. Physics Review E, 75, 016210.
Strogatz, S. H. (1994). Nonlinear Dynamics and chaos: With applications to physics, biology, chemistry, and engineering. Massachusetts: Perseus Books.
Sun, H. H., Abdelwahad, A. A., & Onaral, B. (1894). Linear approximation of transfer function with a pole of fractional-order. IEEE Transactions on Automatic Control, 29, 441–444.
Sundarapandian, V., & Pehlivan, I. (2012). Analysis, control, synchronization, and circuit design of a novel chaotic system. Mathematical Computational Modelling, 55, 1904–1915.
Tacha, O. I., Volos, C. K., Kyprianidis, I. M., Stouboulos, I. N., Vaidyanathan, S., & Pham, V. T. (2016). Analysis, adaptive control and circuit simulatio of a novel nonlineaar finance system. Applied Mathematics and Computation, 276, 200–217.
Tavazoei, M. S., & Haeri, M. (2008). Limitations of frequency domain approximation for detecting chaos in fractional-order systems. Nonlinear Analysis, 69, 1299–1320.
Tavazoei, M. S., & Haeri, M. (2009). A proof for non existence of periodic solutions in time invariant fractional-order systems. Automatica, 45, 1886–1890.
Vaidyanathan, S. (2012). Anti-synchronization of four-wing chaotic systems via sliding mode control. International Journal of Automation and Computing, 9, 274–279.
Vaidyanathan, S. (2013). A new six-term 3-D chaotic system with an exponential nonlineariry. Far East Journal of Mathematical Sciences, 79, 135–143.
Vaidyanathan, S. (2014). Analysis and adaptive synchronization of eight-term novel 3-D chaotic system with three quadratic nonlinearities. The European Physical Journal Special Topics, 223, 1519–1529.
Vaidyanathan, S. (2016). Analysis, control and synchronization of a novel 4-D highly hyperchaotic system with hidden attractors. In A. T. Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control Studies in Fuzziness and Soft Computing (Vol. 337, pp. 529–552). Germany: Springer.
Vaidyanathan, S., & Azar, A. T. (2015a). Analysis, control and synchronization of a nine-term 3-D novel chaotic system. In A. T. Azar & S. Vaidyanathan (Eds.), Chaos Modelling and Control Systems Design Studies in Computational Intelligence (Vol. 581, pp. 19–38). Germany: Springer.
Vaidyanathan, S., & Azar, A. T. (2015b). Anti-synchronization of identical chaotic systems using sliding mode control and an application to Vaidhyanathan-Madhavan chaotic systems. Studies in Computational Intelligence, 576, 527–547.
Vaidyanathan, S., & Azar, A. T. (2015c). Hybrid synchronization of identical chaotic systems using sliding mode control and an application to Vaidhyanathan chaotic systems. Studies in Computational Intelligence, 576, 549–569.
Vaidyanathan, S., & Azar, A. T. (2016a). A novel 4-D four-wing chaotic system with four quadratic nonlinearities and its synchronization via adaptive control method. In A. T. Azar & S. Vaidyanathan (Eds.), Advances in Chaos Theory and Intelligent Control Studies in Fuzziness and Soft Computing (Vol. 337, pp. 203–224). Germany: Springer.
Vaidyanathan, S., & Azar, A. T. (2016b). Adaptive backstepping control and synchronization of a novel 3-D jerk system with an exponential nonlinearity. In A. T. Azar & S. Vaidyanathan (Eds.), Advances in Chaos Theory and Intelligent Control Studies in Fuzziness and Soft Computing (Vol. 337, pp. 249–274). Germany: Springer.
Vaidyanathan, S., & Azar, A. T. (2016c). Adaptive control and synchronization of Halvorsen circulant chaotic systems. In A. T. Azar & S. Vaidyanathan (Eds.), Advances in Chaos Theory and Intelligent Control Studies in Fuzziness and Soft Computing (Vol. 337, pp. 225–247). Germany: Springer.
Vaidyanathan, S., & Azar, A. T. (2016d). Dynamic analysis, adaptive feedback control and synchronization of an eight-term 3-D novel chaotic system with three quadratic nonlinearities. In A. T. Azar & S. Vaidyanathan (Eds.), Advances in Chaos Theory and Intelligent Control Studies in Fuzziness and Soft Computing (Vol. 337, pp. 155–178). Germany: Springer.
Vaidyanathan, S., & Azar, A. T. (2016e). Generalized projective synchronization of a novel hyperchaotic four-wing system via adaptive control method. In A. T. Azar & S. Vaidyanathan (Eds.), Advances in Chaos Theory and Intelligent Control Studies in Fuzziness and Soft Computing (Vol. 337, pp. 275–296). Germany: Springer.
Vaidyanathan, S., & Azar, A. T. (2016f). Qualitative study and adaptive control of a novel 4-D hyperchaotic system with three quadratic nonlinearities. In A. T. Azar & S. Vaidyanathan (Eds.), Advances in Chaos Theory and Intelligent Control Studies in Fuzziness and Soft Computing (Vol. 337, pp. 179–202). Germany: Germany.
Vaidyanathan, S., Idowu, B. A., & Azar, A. T. (2015a). Backstepping controller design for the global chaos synchronization of Sprott’s jerk systems. Studies in Computational Intelligence, 581, 39–58.
Vaidyanathan, S., Pham, V. T., & Volos, C. K. (2015b). A 5-d hyperchaotic rikitake dynamo system with hidden attractors. The European Physical Journal Special Topics, 224, 1575–1592.
Vaidyanathan, S., Volos, C., Pham, V. T., Madhavan, K., & Idowo, B. A. (2014). Adaptive backstepping control, synchronization and circuit simualtion of a 3-D novel jerk chaotic system with two hyperbolic sinusoidal nonlinearities. Archives of Control Sciences, 33, 257–285.
Vaidyanathan, S., Volos, C. K., & Pham, V. T. (2015c). Analysis, control, synchronization and spice implementation of a novel 4-d hyperchaotic rikitake dynamo system without equilibrium. Journal of Engineering Science and Technology Review, 8, 232–244.
Volos, C. K., Kyprianidis, I. M., & Stouboulos, I. N. (2011). Various synchronization phenomena in bidirectionally coupled double scroll circuits. Communications in Nonlinear Science and Numerical Simulation, 71, 3356–3366.
Volos, C. K., Kyprianidis, I. M., & Stouboulos, I. N. (2012). A chaotic path planning generator for autonomous mobile robots. Robotics and Automation Systems, 60, 651–656.
Volos, C. K., Kyprianidis, I. M., & Stouboulos, I. N. (2013). Image encryption process based on chaotic synchronization phenomena. Signal Processing, 93, 1328–1340.
Wang, X., & Chen, G. (2013). Constructing a chaotic system with any number of equilibria. Nonlinear Dynamics, 71, 429–436.
Wei, Z. (2011). Dynamical behaviors of a chaotic system with no equilibria. Physics Letters A, 376, 102–108.
Westerlund, S., & Ekstam, L. (1994). Capacitor theory. IEEE Transactions on Dielectrics and Electrical Insulation, 1, 826–839.
Woafo, P., & Kadji, H. G. E. (2004). Synchronized states in a ring of mutually coupled self-sustained electrical oscillators. Physical Review E, 69, 046206.
Wolf, A., Swift, J. B., Swinney, H. L., & Vastano, J. A. (1985). Determining Lyapunov exponents from a time series. Physica D, 16, 285–317.
Yalcin, M. E., Suykens, J. A. K., & Vandewalle, J. (2004). True random bit generation from a double-scroll attractor. IEEE Transactions on Circuits Systems I, Regular Papers, 51, 1395–1404.
Yalcin, M. E., Suykens, J. A. K., & Vandewalle, J. (2005). Cellular neural networks. World Scientific, Singapore: Multi-Scroll Chaos and Synchronization.
Yang, Q. G., & Zeng, C. B. (2010). Chaos in fractional conjugate lorenz system and its scaling attractor. Communications in Nonlinear Science and Numerical Simulation, 15, 4041–4051.
Zhu, Q., & Azar, A. T. (2015). Complex system modelling and control through intelligent soft computations. Germany: Springer.
Zhusubaliyev, Z. T., & Mosekilde, E. (2015). Multistability and hidden attractors in a multilevel DC/DC converter. Mathematics and Computers in Simulation, 109, 32–45.
Acknowledgements
This research is funded by Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 102.02–2012.27
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this chapter
Cite this chapter
Pham, VT., Vaidyanathan, S., Volos, C.K., Azar, A.T., Hoang, T.M., Van Yem, V. (2017). A Three-Dimensional No-Equilibrium Chaotic System: Analysis, Synchronization and Its Fractional Order Form. In: Azar, A., Vaidyanathan, S., Ouannas, A. (eds) Fractional Order Control and Synchronization of Chaotic Systems. Studies in Computational Intelligence, vol 688. Springer, Cham. https://doi.org/10.1007/978-3-319-50249-6_15
Download citation
DOI: https://doi.org/10.1007/978-3-319-50249-6_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-50248-9
Online ISBN: 978-3-319-50249-6
eBook Packages: EngineeringEngineering (R0)