Skip to main content

Chaotic Planning Paths Generators by Using Performance Surfaces

  • Chapter
  • First Online:
Fractional Order Control and Synchronization of Chaotic Systems

Abstract

Chaotic systems have been widely used as path planning generators in autonomous mobile robots due to the unpredictability of the generated trajectories and the coverage rate of the robots workplace. In order to obtain a chaotic mobile robot, the chaotic signals are used to generate True RNGs (TRNGs), which, as is known, exploit the nondeterministic nature of chaotic controllers. Then, the bits obtained from TRNGs can be continuously mapped to coordinates (\(x_n, y_n\)) for positioning the robot on the terrain. A frequent technique to obtain a chaotic bitstream is to sample analog chaotic signals by using thresholds. However, the performance of chaotic path planning is a function of optimal values for those levels. In this framework, several chaotic systems which are used to obtain TRNGs but by computing a quasi-optimal performance surface for the thresholds is presented. The proposed study is based on sweeping the Poincaré sections to find quasi-optimal values for thresholds where the coverage rate is higher than those obtained by using the equilibrium points as reference values. Various scenarios are evaluated. First, two scroll chaotic systems such as Chua’s circuit, saturated function, and Lorenz are used as entropy sources to obtain TRNGS by using its computed performance surface. Afterwards, n-scrolls chaotic systems are evaluated to get chaotic bitstreams with the analyzed performance surface. Another scenario is dedicated to find the performance surface of hybrid chaotic systems, which are composed by three chaotic systems where one chaotic system determines which one of the remaining chaotic signals will be used to obtain the chaotic bitstream. Additionally, TRNGs from two chaotic systems with optimized Lyapunov exponents are studied. Several numerical simulations to compute diverse metrics such as coverage rate against planned points, robot’s trajectory evolution, covered terrain, and color map are carried out to analyze the resulting TRNGs. This investigation will enable to increase several applications of TRNGs by considering the proposed performance surfaces.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andronov, A., Vitt, E., & Khaikin, S. (1966). Theory of oscillations. Springer series in synergetics. Oxford, New York: Addison-Wesley Pub Co.

    Google Scholar 

  2. Anishchenko, V. S., Astakhov, V., Vadivasova, T., Neiman, A., & Schimansky-Geier, L. (1995). Dynamical chaos-models and experiments. Springer series in synergetics. Singapore: World Scientific.

    Google Scholar 

  3. Arita, S. (2014). Relationship between logistic chaos and randomness using a matrix of probabilities and its application to the classification of time series: The line from chaos point to the reversed type of chaos is perpendicular to that from randomness’s point to its reversed type. In 15th International Symposium on Soft Computing and Intelligent Systems (SCIS), 2014 Joint 7th International Conference on and Advanced Intelligent Systems (ISIS) (pp. 1021–1028). doi:10.1109/SCIS-ISIS.2014.7044908.

  4. Azar, A. T., & Vaidyanathan, S. (2014). Chaos modeling and control systems design. Springer.

    Google Scholar 

  5. Azar, A. T., & Vaidyanathan, S. (2015). Computational intelligence applications in modeling and control. Springer.

    Google Scholar 

  6. Azar, A. T., & Vaidyanathan, S. (2016). Advances in chaos theory and intelligent control (1st ed.). Springer.

    Google Scholar 

  7. Bae, Y. (2004). Target searching method in the chaotic mobile robot. In Digital Avionics Systems Conference, 2004, DASC 04 (Vol. 2, pp. 12.D.7–12.1–9).

    Google Scholar 

  8. Boulkroune, A., Bouzeriba, A., Bouden, T., & Azar, A. T. (2016). Fuzzy adaptive synchronization of uncertain fractional-order chaotic systems. In T. A. Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control (pp. 681–697). Springer. doi:10.1007/978-3-319-30340-6_28.

  9. Boulkroune, A., Hamel, S., Azar, A. T., & Vaidyanathan, S. (2016). Fuzzy control-based function synchronization of unknown chaotic systems with dead-zone input. In T. A. Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control (pp. 699–718). Springer. doi:10.1007/978-3-319-30340-6_29.

  10. Cencini, M., Cecconi, F., & Vulpiani, A. (2010). Chaos from simple models to complex systems (Vol. 17). World Scientific Publishing.

    Google Scholar 

  11. Dettmer, R. (1993). Chaos and engineering. IEE Review, 39(5), 199–203.

    Article  Google Scholar 

  12. Jefferies, D. J., Deane, J. H. B., & Johnstone, G. G. (1989). An introduction to chaos. Electronics Communication Engineering Journal, 1(3), 115–123. doi:10.1049/ecej:19890024.

  13. Jia, Q., & Wang, X. (2008). Path planning of mobile robots in dynamic environment using chaotic prediction. In Control and Decision Conference, 2008. CCDC 2008. Chinese (pp. 925–930).

    Google Scholar 

  14. Lawrance, A. J. (2010). Recent theory and new applications in chaos communications. In In Proceedings of 2010 IEEE International Symposium on Circuits and Systems (ISCAS) (pp. 2446–2449). doi:10.1109/ISCAS.2010.5537154.

  15. Lin, C. F., Shih, S. H., Zhu, J. D., & Lee, S. H. (2012). Implementation of an offline chaos-based EEG encryption software. In 2012 14th International Conference on Advanced Communication Technology (ICACT) (pp. 430–433).

    Google Scholar 

  16. Lorenz, E. N. (1963). Deterministic non periodic flow. Journal of the Atmospheric Sciences, 20(2), 130–141. doi:10.1175/1520-0469(1963) 020<0130:DNF>2.0.CO;2.

    Article  Google Scholar 

  17. Lu, J., & Chen, G. (2006). A brief overview of multi-scroll chaotic attractors generation. In 2006 IEEE International Symposium on Circuits and Systems (ISCAS). Proceedings (Vol. 4, pp. 702–705).

    Google Scholar 

  18. Muñoz-Pacheco, J., & Tlelo-Cuautle, E. (2010). Electronic design automation of multi-scroll chaos generators. Bentham Sciences Publishers.

    Google Scholar 

  19. Nakamura, Y., & Sekiguchi, A. (2001). The chaotic mobile robot. IEEE Transactions on Robotics and Automation, 17(6), 898–904. doi:10.1109/70.976022.

    Article  Google Scholar 

  20. Nguimdo, R., Lavrov, R., Colet, P., Jacquot, M., Chembo, Y., & Larger, L. (2010). Effect of fiber dispersion on broadband chaos communications implemented by electro-optic nonlinear delay phase dynamics. Journal of Lightwave Technology, 28(18), 2688–2696.

    Article  Google Scholar 

  21. Palacin, J., Salse, J. A., Valganon, I., & Clua, X. (2003). Building a mobile robot for a floor-cleaning operation in domestic environments. In Instrumentation and Measurement Technology Conference, 2003. IMTC ’03. Proceedings of the 20th IEEE (Vol. 2, pp. 1391–1396). doi:10.1109/IMTC.2003.1207979.

  22. Pareschi, F., Rovatti, R., & Setti, G. (2007). Second-level nist randomness tests for improving test reliability. In 2007 IEEE International Symposium on Circuits and Systems (pp. 1437–1440). doi:10.1109/ISCAS.2007.378572.

  23. Pareschi, F., Setti, G., & Rovatti, R. (2010). Implementation and testing of high-speed cmos true random number generators based on chaotic systems. IEEE Transactions on Circuits and Systems I: Regular Papers, 57(12), 3124–3137. doi:10.1109/TCSI.2010.2052515.

    Article  MathSciNet  Google Scholar 

  24. Rukhin, A., & e Soto, J. (2010). A statistical test suite for random and pseudorandom number generators for cryptographic applications. Springer series in synergetics. U.S: Department of Commerce, National Institute of Standards and Technology, Gaithersburg, MD.

    Google Scholar 

  25. Ryu, H. G., & Lee, J. H. (2013). High security wireless cdsk-based chaos communication with new chaos map. In Military Communications Conference, MILCOM 2013—2013 IEEE (pp. 786–790). doi:10.1109/MILCOM.2013.139.

  26. Shen, C., Yu, S., Lu, J., & Chen, G. (2014). A systematic methodology for constructing hyperchaotic systems with multiple positive lyapunov exponents and circuit implementation. IEEE Transactions on Circuits and Systems I: Regular Papers, 61(3), 854–864.

    Google Scholar 

  27. Sooraska, P., & Klomkarn, K. (2010). “No-cpu” chaotic robots: From classroom to commerce. IEEE Circuits and Systems Magazine, 10(1), 46–53. doi:10.1109/MCAS.2010.935740.

    Article  Google Scholar 

  28. Strogatz, S. H. (1994). Nonlinear dynamics and chaos: With applications to physics, biology, chemistry and engineering. Perseus Books.

    Google Scholar 

  29. Vaidyanathan, S., & Azar, A. T. (2016). Adaptive backstepping control and synchronization of a novel 3-d jerk system with an exponential nonlinearity. In T. A. Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control (pp. 249–274). Springer. doi:10.1007/978-3-319-30340-6_11.

  30. Vaidyanathan, S., & Azar, A. T. (2016). Adaptive control and synchronization of a halvorsen circulant chaotic systems. In T. A. Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control (pp. 225–247). Springer. doi:10.1007/978-3-319-30340-6_10.

  31. Vaidyanathan, S., & Azar, A. T. (2016). Dynamic analysis, adaptive feedback control and synchronization of an eight-term 3-d novel chaotic system with three quadratic nonlinearities. In T. A. Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control (pp. 155–178). Springer. doi:10.1007/978-3-319-30340-6_7.

  32. Vaidyanathan, S., & Azar, A. T. (2016). Generalized projective synchronization of a novel hyperchaotic four-wing system via adaptive control method. In T. A. Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control (pp. 275–296). Springer. doi:10.1007/978-3-319-30340-6_12.

  33. Vaidyanathan, S., & Azar, A. T. (2016). A novel 4-d four-wing chaotic system with four quadratic nonlinearities and its synchronization via adaptive control method. In T. A. Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control (pp. 203–224). Springer. doi:10.1007/978-3-319-30340-6_9.

  34. Vaidyanathan, S., & Azar, A. T. (2016). Qualitative study and adaptive control of a novel 4-d hyperchaotic system with a three quadratic nonlinearities. In T. A. Azar & S. Vaidyanathan (Eds.), Advances in chaos theory and intelligent control (pp. 179–202). Springer. doi:10.1007/978-3-319-30340-6_8.

  35. Volos, C., Kyprianidis, I., & Stouboulos, I. (2012). A chaotic path planning generator for autonomous mobile robots. Robotics and Autonomous Systems, 60(4), 651–656. doi:10.1016/j.robot.2012.01.001.

    Article  Google Scholar 

  36. Wang, L., Xing, X., & Chu, Z. (2008). On definitions of chaos in discrete dynamical system. In The 9th International Conference for Young Computer Scientists, 2008. ICYCS 2008 (pp. 2874–2878). doi:10.1109/ICYCS.2008.296.

  37. Wang, X., Ma, L., & Du, X. (2009). An encryption method based on dual-chaos system. In Second International Conference on Intelligent Networks and Intelligent Systems, 2009. ICINIS ’09 (pp. 217–220). doi:10.1109/ICINIS.2009.63.

  38. Xia, F., Tyoan, L., Yang, Z., Uzoije, I., Zhang, G., & Vela, P. (2015). Human-aware mobile robot exploration and motion planner. SoutheastCon, 2015, 1–4. doi:10.1109/SECON.2015.7133021.

    Google Scholar 

  39. Xiang, S. Y., Pan, W., Luo, B., Yan, L. S., Zou, X. H., Jiang, N., et al. (2011). Synchronization of unpredictability-enhanced chaos in vcsels with variable-polarization optical feedback. IEEE Journal of Quantum Electronics, 47(10), 1354–1361. doi:10.1109/JQE.2011.2166536.

    Article  Google Scholar 

  40. Xu, X., Guo, J., & Leung, H. (2013). Blind equalization for power-line communications using chaos. IEEE Transactions on Power Delivery, 99, 1–8. doi:10.1109/TPWRD.2013.2296834.

    Google Scholar 

  41. Yalcin, M. E., Suykens, J. A. K., & Vandewalle, J. (2004). True random bit generation from a double-scroll attractor. IEEE Transactions on Circuits and Systems I: Regular Papers, 51(7), 1395–1404. doi:10.1109/TCSI.2004.830683.

    Article  MathSciNet  Google Scholar 

  42. Zhu, Q., & Azar, A. T. (Eds.). (2015). Complex system modelling and control through intelligent soft computations (Vol. 319). Studies in fuzziness and soft computing. Springer. doi:10.1007/978-3-319-12883-2.

Download references

Acknowledgements

This work has been partially supported by the scientific projects: CONACYT No. 258880, PRODEP Red de Nanociencia y Nanotecnología, VIEP-BUAP-2016. OFB acknowledges the financial support received from PRODEP (Mexico). Also, the authors thankfully acknowledge the computer resources, technical expertise and support provided by the Laboratorio Nacional de Supercómputo del Sureste de México through the grant number O-2016/039.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. M. Munoz-Pacheco .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Pimentel-Romero, C.H., Munoz-Pacheco, J.M., Felix-Beltran, O., Gomez-Pavon, L.C., Volos, C.K. (2017). Chaotic Planning Paths Generators by Using Performance Surfaces. In: Azar, A., Vaidyanathan, S., Ouannas, A. (eds) Fractional Order Control and Synchronization of Chaotic Systems. Studies in Computational Intelligence, vol 688. Springer, Cham. https://doi.org/10.1007/978-3-319-50249-6_28

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50249-6_28

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50248-9

  • Online ISBN: 978-3-319-50249-6

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics