Abstract
We present a Resource-Aware Model-Based Optimization framework RAMBO that leads to efficient utilization of parallel computer architectures through resource-aware scheduling strategies. Conventional MBO fits a regression model on the set of already evaluated configurations and their observed performances to guide the search. Due to its inherent sequential nature, an efficient parallel variant can not directly be derived, as only the most promising configuration w.r.t. an infill criterion is evaluated in each iteration. This issue has been addressed by generalized infill criteria in order to propose multiple points simultaneously for parallel execution in each sequential step. However, these extensions in general neglect systematic runtime differences in the configuration space which often leads to underutilized systems. We estimate runtimes using an additional surrogate model to improve the scheduling and demonstrate that our framework approach already yields improved resource utilization on two exemplary classification tasks.
J. Richter and H. Kotthaus—These authors are contributed equally.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
Notes
- 1.
- 2.
- 3.
Bischl, B., Lang, M., Kotthoff, L., Schiffner, J., Richter, J., Studerus, E., Casalicchio, G., Jones, Z.M.: mlr: machine learning in R. J. Mach. Learn. Res. 17(170), 1–5 (2016). http://jmlr.org/papers/v17/15-066.html
- 4.
Bischl et al., mlrMBO: Model-Based Optimization for mlr. https://github.com/berndbischl/mlrMBO.
References
Bergstra, J., Bengio, Y.: Random search for hyper-parameter optimization. J. Mach. Learn. Res. 13(1), 281–305 (2012)
Bischl, B., Lang, M., Mersmann, O., Rahnenführer, J., Weihs, C.: BatchJobs and BatchExperiments: abstraction mechanisms for using R in batch environments. J. Stat. Comput. Simul. 64(11), 1–25 (2015)
Bischl, B., Wessing, S., Bauer, N., Friedrichs, K., Weihs, C.: MOI-MBO: multiobjective infill for parallel model-based optimization. In: Pardalos, P.M., Resende, M.G.C., Vogiatzis, C., Walteros, J.L. (eds.) LION 2014. LNCS, vol. 8426, pp. 173–186. Springer, Heidelberg (2014). doi:10.1007/978-3-319-09584-4_17
Delimitrou, C., Kozyrakis, C.: Quasar: resource-efficient and QoS-aware Cluster Management. In: ASPLOS 2014, pp. 127–144. ACM (2014)
Hutter, F., Hoos, H.H., Leyton-Brown, K.: Parallel algorithm configuration. In: Hamadi, Y., Schoenauer, M. (eds.) LION 6. LNCS, vol. 7219, pp. 55–70. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34413-8_5
Jones, D.R., Schonlau, M., Welch, W.J.: Efficient global optimization of expensive black-box functions. J. Global Optim. 13(4), 455–492 (1998)
Karatzoglou, A., Meyer, D., Hornik, K.: Support vector machines in R. J. Stat. Softw. 15(1), 1–28 (2006)
Kotthaus, H., Korb, I., Lang, M., Bischl, B., Rahnenführer, J., Marwedel, P.: Runtime and memory consumption analyses for machine learning R programs. J. Stat. Comput. Simul. 85(1), 14–29 (2015)
Kotthaus, H., Korb, I., Marwedel, P.: Performance analysis for parallel R programs: towards efficient resource utilization. Technical report 01/2015, Department of Computer Science 12, TU Dortmund University (2015). SFB876 Project A3
Lang, M., Kotthaus, H., Marwedel, P., Weihs, C., Rahnenführer, J., Bischl, B.: Automatic model selection for high-dimensional survival analysis. J. Stat. Comput. Simul. 85(1), 62–76 (2015)
Snoek, J., Larochelle, H., Adams, R.P.: Practical bayesian optimization of machine learning algorithms. In: NIPS Workshop on Bayesian Optimization, Sequential Experimental Design, and Bandits, pp. 2960–2968 (2012)
Thornton, C., Hutter, F., Hoos, H.H., Leyton-Brown, K.: Auto-WEKA: combined selection and hyperparameter optimization of classification algorithms. In: Proceedings of ACM SIGKDD, pp. 847–855 (2013)
Tillenius, M., Larsson, E., Badia, R.M., Martorell, X.: Resource-aware task scheduling. ACM Trans. Embed. Comput. Syst. 14(1), 5:1–5:25 (2015)
Acknowledgments
This work was partly supported by Deutsche Forschungsgemeinschaft (DFG) within the Collaborative Research Center SFB 876, A3.
Author information
Authors and Affiliations
Corresponding authors
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Richter, J., Kotthaus, H., Bischl, B., Marwedel, P., Rahnenführer, J., Lang, M. (2016). Faster Model-Based Optimization Through Resource-Aware Scheduling Strategies. In: Festa, P., Sellmann, M., Vanschoren, J. (eds) Learning and Intelligent Optimization. LION 2016. Lecture Notes in Computer Science(), vol 10079. Springer, Cham. https://doi.org/10.1007/978-3-319-50349-3_22
Download citation
DOI: https://doi.org/10.1007/978-3-319-50349-3_22
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-50348-6
Online ISBN: 978-3-319-50349-3
eBook Packages: Computer ScienceComputer Science (R0)