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Abstract. Word embeddings play a significant role in many modern NLP sys-
tems. Since learning one representation per word is problematic for polysemous
words and homonymous words, researchers propose to use one embedding per
word sense. Their approaches mainly train word sense embeddings on a corpus.
In this paper, we propose to use word sense definitions to learn one embedding
per word sense. Experimental results on word similarity tasks and a word sense
disambiguation task show that word sense embeddings produced by our approach
are of high quality.
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1 Introduction

With the development of the Internet and computational efficiency of processors, gi-
gantic unannotated corpora can be obtained and utilized fornatural language process-
ing (NLP) tasks. Those corpora can be used to train distributed word representations
(i.e. word embeddings) which play an important role in most state-of-the-art NLP neu-
ral network models. The word embeddings capture syntactic and semantic properties
which can be exposed directly in tasks such as analogical reasoning [14], word similar-
ity [8] etc. Prevalent word embedding learning models include Skip-gram [14], Glove
[20] and variants of them.

Basic Skip-gram [14] and Glove [20] output one vector for each word. However,
multi-sense words (including polysemous words and homonymous words) should in-
herently have different embeddings for different senses. Therefore researchers propose
to use one embedding per word sense [21,8,2,19,23,9,12,24,11]. Previous work tends
to perform word sense induction (WSI) or word sense disambiguation (WSD) on the
corpus to determine the senses of words. Then they train the word sense embeddings
on it using variants of Skip-gram or other approaches. However, the result of WSI or
WSD on the corpus is not reliable and the errors from WSI or WSDwill have bad effect
on the quality of word sense embeddings. Besides, these approaches normally produce
bad embeddings for rare word senses.

Lexical ontologies such as WordNet [15] and BabelNet [18] are built by specialists
in linguistics and they provide semantic information of word senses including their
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definitions. Different from determining word senses by WSI or WSD models, semantic
information provided by lexical ontologies is normally accurate and reliable. To utilize
the accurate information of word senses provided by lexicalontologies, we propose an
approach based on recurrent neural networks (RNN) to learn word sense embeddings
from word sense definitions. Our approach learns both word sense embeddings and
a definition understanding model. Since the collection of definitions is much smaller
in scale than a corpus for embedding training, our approach is less time-consuming
comparing with corpus-based learning approaches. Experimental results show that the
word sense embeddings are of high quality for both common andrare words and the
definition understanding model can understand other natural language text besides word
sense definitions.

Our contributions can be summarized as follows:

– We propose to learn word sense embeddings from word sense definitions using
RNN-based models.

– Different from previous embedding learning approaches, our learning is conducted
in a supervised paradigm.

– Our approach is less time-consuming comparing with corpus-based learning ap-
proaches.

– Our approach treats senses of rare words and of common words equally since defi-
nitions have no tendency to common words and this is hard to achieve for corpus-
based learning approaches.

The rest of this paper is organized as follows: Section 2 presents details of our
approach. Section 3 reports experimental results. Section4 introduces the related work.
Section 5 concludes our work.

2 Methodology

While a corpus presents distributional properties of words, definitions provide semantic
information of word senses in a compositional way. Therefore, we believe that we can
compute word sense embeddings from definitions. We choose touse recurrent neural
networks to model semantic compositionality because RNN-based models have been
shown to be able to model semantic compositionality in many tasks, such as neural
machine translation [1,6,10], text entailment recognition [22] etc.

2.1 Definition Understanding Model

A word sense definition is a word sequence:{x1, x2, ..., xn}. As Figure 1 shows, RNN
models take word embeddings of the words in definitions one byone and update the in-
ternal memory according to its computation unit. The outputof the RNN at the last word
of the definition, i.e.,hn is assumed to contain the semantic meaning of the definition.
Hence we maphn to sense embedding space with a transformation matrix:

˜ews = Whhn + bh (1)
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Fig. 1. Mapping definitions to word sense embeddings with RNN-basedmodel.

whereWh is the transformation matrix,bn is the bias term and̃ews is the sense embed-
ding computed by the definition understanding model.

The specific RNN model can be a vanilla RNN model, Gated Recurrent Unit (GRU)
[3] or Long Short Term Memory (LSTM) [7]. Comparing with vanilla RNNs, LSTMs
and GRUs can hold long-term information, i.e., they can alleviate the gradient vanishing
and information-forgettingproblem associated with the vanilla RNN for long sequences
[3,7].

2.2 Training Definition Understanding Model with Definitions of Monosemous
Words

Having determined the model structure, the challenge is howto train the RNN-based
definition understanding model. Since the contexts of a monosemous word are associ-
ated with its only word sense, we assume its word sense embedding is similar to its
word embedding. So we initialize sense embeddings of monosemous words with their
word embeddings trained with Skip-gram [14] on a corpus and thus we can train the
RNN-based model parameters with sense embeddings of monosemous words as target
and their definitions as inputs. The words in definitions are represented by their word
embeddings. Word embeddings are kept fixed during the whole training process. As
word embeddings trained on a corpus provide distributionalproperties of the words,
our approach provides a supervised training for model parameters by combining dis-
tributional and compositional properties of word senses. The objective function of this
training step is

J1 = −
∑

w∈Vmono

cos(ews, ˜ews) (2)

whereVmono is the set of monosemous words andews is the initialized sense embed-
ding of the monosemous wordw and ˜ews is the word sense embedding produced by
our RNN-based definition understanding model. With this objective function, we train
˜ews to be similar toews. Both the sense embeddings and word embeddings used in

definitions are fixed in this step, i.e., we only train model parameters in this step.
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2.3 Word Sense Embedding Learning

We have trained RNN-based definition understanding model with sense embeddings of
monosemous words and their definitions in the previous step.However, we still haven’t
use definitions of senses of multi-sense words. Since the word embeddings are trained
according to the co-occurrences from a corpus, the word embedding of a multi-sense
word usually represent the most common sense better and thisis shown by our near-
est neighbor evaluation in Section 3.2. So it is not appropriate to initialize all sense
embeddings of a multi-sense word with its word embedding. Since WordNet provides
a set of synonyms for each word sense, we initialize the embedding of a word sense
using the word embedding of a synonym which contains only onesense. If there is no
synonym conforms to this condition, we initialize the senseembedding with the word
embedding of a word in its definition which has the largest cosine similarity with the
original word. Besides, the similarity should exceed a thresholdδ which we set to be
0.2 or we will use the word embedding of the target word sense to initialize its sense
embedding. Although these sense embeddings are simply initialized, they still contain
meaningful semantic information for training the definition understanding model and
reversely they will also be tuned by our model. Comparing with the last step, we still
optimize the cosine similarities between embeddings produced by the RNN-based def-
inition understanding model and the initialized word senseembeddings. The difference
is that in this step we use definitions of both monosemous words and multi-sense words
and update all sense embeddings jointly including sense embeddings of monosemous
words because some of them are of low quality if the words are of low frequency in the
corpus their word embeddings are trained. The objective function is as follows:

J2 = −
∑

w∈V

∑

s∈Sw

cos(ews, ˜ews) (3)

whereV is the whole word set andSw is the set of word senses of wordw. To sum up,
we make word sense embeddings and RNN-based definition understanding model tune
each other in this step.

2.4 Training with Word Sense Embeddings to Represent Words in Definitions

In the previous two steps, we train the definition understanding model and learn sense
embeddings jointly using word embeddings to represent words in definitions. However,
some words in definitions are multi-sense words and therefore to use sense embeddings
to represent those words is assumed to be more appropriate. Besides, it can also be seen
as an application of the word sense embeddings trained in thelast step.

To this end, we perform WSD for the words in definitions. We apply S2C (simple
to complex) strategy described in [2] to implement WSD. Specifically, we identify the
senses for words with less senses first and then for words withmore senses. We compute
the cosine similarity between each sense embedding of a wordwith its context embed-
ding and choose the sense with greatest cosine similarity with the context embedding as
the sense of the word. The context embedding is the average embedding of some other
words in definitions. These words include nouns, verbs, adjectives and adverbs. We use
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the sense embeddings of those words whose senses have been identified and use the
word embeddings of the rest words.

The objective function is the same as the previous step, but we use sense embeddings
to represent words in definitions in this step and their senseembeddings are updated for
the optimization of the objective function.

3 Experiments

We present qualitative evaluations and quantitative evaluations in this section. To show
our word sense embeddings capture the semantics of word senses, we present the near-
est neighbors of a word sense based on cosine similarity between the embedding of the
center word sense and embeddings of other word senses. Besides, to show our model
can actually understand a definition or any description, we present the most matched
word senses for a given description according to our RNN-based definition understand-
ing model. In our quantitative evaluations, we evaluate thesense embeddings on word
similarity tasks and a word sense disambiguation task.

3.1 Setup

We use WordNet 3.01 as the lexical ontology to acquire the definitions of word senses.
We choose the publicly released 300 dimensional vectors2 trained with Skip-gram[14]
on part of Google News dataset (about 100B words) as word embeddings used in our
approach. We also take the word embeddings as our baseline. We randomly initialize
model parameters within (-0.012, 0.012) except that bias terms are initialized as zero
vectors. We adopt Adadelta [25] with mini-batch to minimizeour objective functions
and set the initial learning rate to be 0.12.

3.2 Qualitative Evaluations

To illustrate the quality of our word sense embeddings, we show the nearest neighbors
of words and of their senses in Table 1. The nearest neighborsof words are computed
using word embeddings. The nearest neighbors of word sensesare computed using
word sense embeddings trained with our definition understanding model which uses
GRU as its specific RNN. We leave out the sense numbers of nearest senses because the
numbers are meaningless to be presented here. As can be seen,the nearest neighbors
of the center words are normally associated with the most common sense of the word.
Whereas, the nearest neighbors of word senses are associated with the corresponding
sense of the word. Besides, some nearest neighbours (e.g., ”supernova”, ”dainty”) are
rare to be seen in a corpus. Therefore it indicates even the sense embeddings of rare
words are meaningful.

Although we train RNN-based definition understanding modelto map a definition
to its sense embedding, we will show the RNN-based definitionunderstanding model

1 http://wordnet.princeton.edu/
2 https://code.google.com/archive/p/word2vec/
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Center Word/SenseNearest Neighbors

bank ATM machines, Iberiabank, automated teller machines
bank1 financial, deposit, ATMs
bank2 riverbank, water, slope

star matinee idol, singer, superstar
star1 asteroid, celestial, supernova
star2 legend, standout, footballer

pretty wonderfully, unbelievably, nice
pretty1 remarkably, extremely, obviously
pretty2 beauteous, dainty, lovely

Table 1. Nearest neighbors based on cosine similarity between word embeddings or sense em-
beddings.

can also understand descriptions we made up. We compute the cosine similarities be-
tween the embedding produced by our model according to the description and all word
sense embeddings to find those most matched word senses. We still choose GRU as
the specific RNN. Table 2 shows the most matched word senses tothe given descrip-
tions. The descriptions in the upper subfield are definitionsfrom WordNet and those in
the under subfield are casual descriptions made up by us. Mostof the predicted words
match the meaning the descriptions convey and those that don’t exactly match (e.g.,
”gullible”, ”falsifiable”) are semantically relevant. Thepredicted words of the descrip-
tions we make up are coincident with the descriptions. That illustrates our definition
understanding model is effective to understand natural language.

Description Most Matched Words

free of deceit aboveboard, gullible, genuine
causing one to believe the truth of something prove, convince, falsifiable
make (someone) agree, understand, or realize the truth or valid-
ity of something

convince, inform, acknowledge

the place where people live in home, dwellings, inhabited
a machine we use every day counter, computer, dishwasher
the animal which lives in the sea clam, nautilus, stonefish

Table 2. Using our definition understanding model to find the most matched word senses for
descriptions.

3.3 Quantitative Evaluations

Word Similarity Evaluation on WordSim-353 WordSim-353 dataset [4] consists of
353 pairs of nouns which are associated with human judgmentson their similarities
without context information. The evaluation metrics on this dataset is the Spearman’s
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rank correlation coefficientρ between the average human score and the cosine similarity
scores predicted by the system.

Following [8,9,21], we use weighted average of cosine similarities between each
possible word sense pair as the similarity of the two words. Since there is no context
provided, the weights can be uniformly distributed which isadopted by [8,21] or be
determined by word sense frequency in the training set whichis adopted by [9]. We
choose to take the weights uniformly distributed. The following equation describe the
weighted strategy:

WeiSim(w,w′) =

n1∑

i

n2∑

j

p(si|w)p(sj |w
′)cos(ewsi

, ew′

sj
) (4)

wherew andw′ are the two given words,n1 andn2 are the number of senses of the two
words andp(si|w) andp(sj |w′) are the normalized weights to usesi andsj to compute
similarity, ewsi

andew′

sj
are sense embeddings.

System ρ× 100

Reisinger and Mooney [21] tf-idf (Wiki2.05B) 76.0
Huang et al. [8] (0.99B) 71.3
Neelakantan et al. [19] (0.99B) 71.2
Wu and Giles [24] 73.9
Iacobacci et al. [9] 77.9
SG (100B) 66.5
SG (100B)+Def (Word) (vanilla RNN) 67.4(+0.9)*
SG (100B)+Def (Word)+Def (Sense) (vanilla RNN)68.2(+0.7)**
SG (100B)+Def (Word) (LSTM) 74.1(+7.6)*
SG (100B)+Def (Word)+Def (Sense) (LSTM) 75.0(+0.9)**
SG (100B)+Def (Word) (GRU) 73.7(+7.2)*
SG (100B)+Def (Word)+Def (Sense) (GRU) 74.7(+1.0)**

Table 3. Performances on WordSim-353. The bottom subfield shows the performance of differ-
ent settings of our system. SG represents just using word embeddings we acquired. Def (Word)
represents the step in which we use word embeddings to represent words in definitions to train
model and sense embeddings. Def (Sense) represents the stepin which we use sense embeddings
to represent words in definitions to train model and sense embeddings. * indicates statistical sig-
nificant differences in t-test between performances of SG(100B) and SG (100B)+Def (Word).
** indicates statistical significant differences in t-testbetween performances of SG (100B)+Def
(Word) and SG (100B)+Def (Word)+Def (Sense) with the same RNN model.

Table 3 shows our results compared with previous approaches. Reisinger and Mooney
[21] propose to cluster the contexts of each word into groupsand make each cluster a
distinct prototype vector. Huang et al. [8] also use contexts to determine the number of
senses of a word and use global context to improve word representations. Neelakantan
et al. [19] extend Skip-gram [14] to learn multiple embeddings per word. Wu and Giles
[24] cluster word senses and learn word sense embeddings from related Wikipedia con-
cepts. Iacobacci et al. [9] use BabelNet [18] as the word sense inventory and apply
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WSD to a corpus before they train word sense embeddings with Continuous Bag of
Words (CBOW) architecture [13].

As can be seen, our approach achieves significant improvement over the original
word embeddings we use. Most improvements come from the stepwe train word sense
embeddings with our RNN-based models when the definitions are still represented by
word embeddings. We achieve further significant improvements when we continue to
jointly train the model and learn sense embeddings using sense embeddings trained in
the previous step to represent words in definitions. It can beseen as an application of
sense embeddings in a natural language understanding task,so it also illustrates our
sense embeddings are better than word embeddings for natural language understanding
from the perspective of real-world natural language understanding tasks. The LSTM
version and GRU version present comparable performances tobe used as the specific
RNN in definition understanding model and vanilla RNN performs much worse than
the other two models. This is in accordance with what previous work illustrated about
the superiority of GRUs and LSTMs over vanilla RNNs [3,7].

Word Similarity Evaluation on Stanford’s Contextual Word S imilarities Since we
need a context to determine the sense of a word when we use the sense embeddings in
real-world tasks and evaluation on context-free word similarity datasets does not allow
us to determine the sense, it cannot fully reveal the qualityof our sense embeddings.
Stanford’s Contextual Word Similarities (SCWS) [8] is a data set which provides the
contexts of the target words. The way we determine the sense of the target words is the
same S2C strategy we described in Section 2.4. Having determined the senses of the
target words, we compute cosine similarity of their sense embeddings as their similarity.
The evaluation metrics is also the Spearman’s rank correlation coefficientρ between the
average human rating and the cosine similarity scores givenby our approach.

System ρ× 100

Huang et al. [8] (0.99B) 65.7
Chen et al. [2] (1B)+WordNet 68.9
Tian et al. [23] (0.99B) 65.4
Neelakantan et al. [19] (0.99B) 69.3
Li et al. [11] (120B) 69.7
Liu et al. [12] (0.99B) 68.1
Wu and Giles [24] 66.4
Iacobacci et al. [9] 62.4
SG (100B) 64.4
SG (100B)+Def (Word) (vanilla RNN) 66.2(+1.8)*
SG (100B)+Def (Word)+Def (Sense) (vanilla RNN)66.8(+0.6)**
SG (100B)+Def (Word) (LSTM) 68.9(+4.5)*
SG (100B)+Def (Word)+Def (Sense) (LSTM) 69.5(+0.6)**
SG (100B)+Def (Word) (GRU) 69.1(+4.7)*
SG (100B)+Def (Word)+Def (Sense) (GRU) 69.5(+0.4)**

Table 4.Performances for our system and other proposed approaches on SCWS dataset.
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Table 4 shows our results compared to previous approaches. Besides the models we
have mentioned, Chen et al. [2] use WordNet to acquire numberof senses of words
and use definitions just to initialize sense embeddings and then train sense embeddings
on a corpus processed with WSD model. Tian et al. [23] model word polysemy from
a probabilistic perspective and combine it with Skip-Gram [14] model. Liu et al. [12]
incorporate topic models into word sense embedding learning. Li et al. [11] use Chinese
Restaurant Processes to determine the sense of a word and learn the sense embeddings
jointly.

As can be seen, the improvements from each training step of our approach are in
accordance with the results in WordSim-353 evaluation. LSTM and GRU also present
much more improvements than vanilla RNN. Our proposed approach present high over-
all performance on both word similarity tasks. That illustrates the word sense embed-
dings indeed capture the semantics of word senses. Strictlyspeaking, the comparison
between different approaches are not totally fair because the resources different ap-
proaches use are different.

Word Sense Disambiguation EvaluationWe also apply our word sense embeddings
in a word sense disambiguation task to show the word sense embeddings capture the
differences between senses of a word. In Semeval-2007 coarse-grained all-words WSD
task [17], WordNet is used as the word sense inventory. But the evaluation of word sense
disambiguation result is on a coarser-grained version of the WordNet sense inventory
and those word senses which are hard to disambiguate even forhuman are clustered into
one class. The version of WordNet used in this task is 2.1, butwe learn our word sense
embeddings with WordNet 3.0. So we use the sense map3 between the two versions
provided by the developers to address this issue. To comparethe effectiveness of our
word sense embedding on this task with previous work, following Chen et al. [2], we
still adopt the S2C strategy we described in Section 2.4 to disambiguate word sense.
We also show the result produced by randomly choosing the sense of words according
to [2].

System F1
Random 62.7
Chen et al. [2] (1B)+WordNet 75.8
SG (100B)+Def (Word) (vanilla RNN) 69.5
SG (100B)+Def (Word)+Def (Sense) (vanilla RNN)70.3(+0.8)**
SG (100B)+Def (Word) (LSTM) 75.6
SG (100B)+Def (Word)+Def (Sense) (LSTM) 76.4(+0.8)**
SG (100B)+Def (Word) (GRU) 75.7
SG (100B)+Def (Word)+Def (Sense) (GRU) 76.3(+0.6)**

Table 5.Performances on Semeval-2007 coarse-grained all-words WSD task.

3 https://wordnet.princeton.edu/man/sensemap.5WN.html
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The results are shown in Table 5. After we train our model and word sense embed-
dings using sense embeddings to represent words in definitions, our approach outper-
forms Chen et al. [2] on this task. It illustrates that our sense embeddings can actually
distinguish different senses of a word and our approach can actually learn the semantics
of senses from definitions.

4 Related Work

Early word embedding learning approaches learn one embedding per word. Skip-gram
[14] and Glove [20] are the most prevalent models of this kind. Both of them use context
information extracted from an unannotated corpus to learn word embeddings.

Since one embedding for each word sense are suggested to be better than a single
embedding for a word, many word sense embedding learning approaches have been
proposed [21,8,2,19,23,9,12,24,11]. Researchers tend toextend Skip-gram and Glove
models to learn sense embeddings with WSI or WSD as a preliminary. Reisinger and
Mooney [21] propose to cluster the contexts of each word intogroups and make each
cluster a distinct prototype vector. Huang et al. [8] determine the sense of a word by
clustering the contexts and then apply it to neural languagemodel with global context.
Guo et al. [5] propose to use parallel data for WSI and learning word sense embed-
dings. Neelakantan et al. [19] extend Skip-gram [14] to a model which jointly performs
word sense discrimination and embedding learning. Liu et al. [12] associate words with
topics and then extend Skip-gram [14] to learn sense and topic embeddings. Wu and
Giles [24] propose to use Wikipedia concepts to cluster wordsenses and to learn sense-
specific embeddings of words. Li et al. [11] use Chinese Restaurant Processes to deter-
mine the sense of a word and learn the sense embedding jointly. Iacobacci et al. [9] use
BabelNet [18] as the word sense inventory and opt for Babelfy[16] to perform WSD
on Wikipedia4. Then they train word sense embeddings using CBOW architecture [13]
on the processed corpus. Chen et al.[2] use WordNet as its lexical ontology to acquire
numbers of word senses and use the average word embedding of words chosen from
definitions as the initialization of sense embeddings. And then they do WSD on a cor-
pus and train sense embeddings with a variant of Skip-gram onthe corpus. Both of our
approaches use words in definitions to initialize word senseembeddings, but after that
their training still concentrates on the corpus while we train our model and word sense
embeddings with definitions. The disadvantage to use a corpus processed by WSD or
WSI may come from the unreliability of the processing results and since a corpus for
embedding training is usually much larger in scale than the summation of all the def-
initions to get satisfied result, their approach inevitablyconsumes much more time on
WSD and training.

5 Conclusion

In this paper, we propose to use RNN-based models to learn word sense embeddings
from sense definitions. Our approach produces an effective natural language under-
standing model and word sense embeddings of high quality. Comparing with previous

4 http://dumps.wikimedia.org/enwiki/
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work training word sense embeddings on a corpus, our approach is less time-consuming
and better for rare word senses. Experimental results show our word sense embeddings
are of high quality.
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