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Abstract. Word embeddings play a significant role in many modern NLR sys
tems. Since learning one representation per word is prailerfor polysemous
words and homonymous words, researchers propose to userdreeléing per
word sense. Their approaches mainly train word sense enmggdan a corpus.

In this paper, we propose to use word sense definitions to le@e embedding
per word sense. Experimental results on word similaritygand a word sense
disambiguation task show that word sense embeddings peddycour approach
are of high quality.

Keywords: Word sense embedding, RNN, WordNet

1 Introduction

With the development of the Internet and computational iefficy of processors, gi-
gantic unannotated corpora can be obtained and utilizeddtural language process-
ing (NLP) tasks. Those corpora can be used to train disgtbutord representations
(i.e. word embeddings) which play an important role in mestesof-the-art NLP neu-
ral network models. The word embeddings capture syntanticsemantic properties
which can be exposed directly in tasks such as analogicsdnéag [14], word similar-
ity [8] etc. Prevalent word embedding learning models idelskip-gram([14], Glove
[20] and variants of them.

Basic Skip-gram[[14] and Glové [20] output one vector forreaord. However,
multi-sense words (including polysemous words and homaugwords) should in-
herently have different embeddings for different sensbsrdfore researchers propose
to use one embedding per word seris€e[[21,82,19,28,9/12]2#revious work tends
to perform word sense induction (WSI) or word sense disamdiign (WSD) on the
corpus to determine the senses of words. Then they train ¢ind sense embeddings
on it using variants of Skip-gram or other approaches. Hewdte result of WSI or
WSD on the corpus is not reliable and the errors from WSI or WA Chave bad effect
on the quality of word sense embeddings. Besides, theseaqips normally produce
bad embeddings for rare word senses.

Lexical ontologies such as WordNeét [15] and BabellNet [18]lauilt by specialists
in linguistics and they provide semantic information of Waenses including their
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definitions. Different from determining word senses by WEWSD models, semantic
information provided by lexical ontologies is normally acate and reliable. To utilize
the accurate information of word senses provided by lexio&dlogies, we propose an
approach based on recurrent neural networks (RNN) to leard sense embeddings
from word sense definitions. Our approach learns both wondesembeddings and
a definition understanding model. Since the collection dinit®ns is much smaller
in scale than a corpus for embedding training, our approadasis time-consuming
comparing with corpus-based learning approaches. Expetahresults show that the
word sense embeddings are of high quality for both commonrarelwords and the
definition understanding model can understand other rd&unguage text besides word
sense definitions.
Our contributions can be summarized as follows:

— We propose to learn word sense embeddings from word sensgtide using
RNN-based models.

— Different from previous embedding learning approachesl|earning is conducted
in a supervised paradigm.

— Our approach is less time-consuming comparing with cotased learning ap-
proaches.

— Our approach treats senses of rare words and of common wpudtyesince defi-
nitions have no tendency to common words and this is hardhizae for corpus-
based learning approaches.

The rest of this paper is organized as follows: Secfibn 2emissdetails of our
approach. Sectidd 3 reports experimental results. Sddiiotnoduces the related work.
Sectiorld concludes our work.

2 Methodology

While a corpus presents distributional properties of wodésinitions provide semantic
information of word senses in a compositional way. Themefare believe that we can
compute word sense embeddings from definitions. We choogsg@ecurrent neural
networks to model semantic compositionality because Ridbetd models have been
shown to be able to model semantic compositionality in masks, such as neural
machine translation [1]6,10], text entailment recognif@?] etc.

2.1 Definition Understanding Model

A word sense definition is a word sequente;, s, ..., z,, }. As Figurdl shows, RNN
models take word embeddings of the words in definitions onentgyand update the in-
ternal memory according to its computation unit. The ougiithe RNN at the last word

of the definition, i.e.h,, is assumed to contain the semantic meaning of the definition.
Hence we map,, to sense embedding space with a transformation matrix:

ews = Wrhy, + by, (1)
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Fig. 1. Mapping definitions to word sense embeddings with RNN-basedel.

wherelV,, is the transformation matri¥,, is the bias term and;,, is the sense embed-
ding computed by the definition understanding model.

The specific RNN model can be a vanilla RNN model, Gated Reatitynit (GRU)
[38] or Long Short Term Memory (LSTM) [7]. Comparing with vdlaiRNNs, LSTMs
and GRUs can hold long-term information, i.e., they carnvake the gradient vanishing
and information-forgetting problem associated with theiNaRNN for long sequences
[38I7].

2.2 Training Definition Understanding Model with Definitions of Monosemous
Words

Having determined the model structure, the challenge is tootirain the RNN-based
definition understanding model. Since the contexts of a reemmus word are associ-
ated with its only word sense, we assume its word sense erimgedsimilar to its
word embedding. So we initialize sense embeddings of menoge words with their
word embeddings trained with Skip-gram [14] on a corpus &g tve can train the
RNN-based model parameters with sense embeddings of maoasevords as target
and their definitions as inputs. The words in definitions apmgresented by their word
embeddings. Word embeddings are kept fixed during the whaleing process. As
word embeddings trained on a corpus provide distributigmaperties of the words,
our approach provides a supervised training for model patars by combining dis-
tributional and compositional properties of word sensdg @bjective function of this
training step is

Ji=— Y cos(euws ems) (2)

WEVimono

whereV,,..no is the set of monosemous words ang, is the initialized sense embed-
ding of the monosemous word ande,,, is the word sense embedding produced by
our RNN-based definition understanding model. With thisotiye function, we train

ews 10 be similar toe,,s. Both the sense embeddings and word embeddings used in
definitions are fixed in this step, i.e., we only train modegpaeters in this step.
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2.3 Word Sense Embedding Learning

We have trained RNN-based definition understanding modél seinse embeddings of
monosemous words and their definitions in the previous stepever, we still haven't
use definitions of senses of multi-sense words. Since thd embeddings are trained
according to the co-occurrences from a corpus, the word ddibg of a multi-sense
word usually represent the most common sense better ani thliiown by our near-
est neighbor evaluation in Sectibn13.2. So it is not appaderio initialize all sense
embeddings of a multi-sense word with its word embeddingc&WordNet provides
a set of synonyms for each word sense, we initialize the edibgabf a word sense
using the word embedding of a synonym which contains onlysemse. If there is no
synonym conforms to this condition, we initialize the seas®hedding with the word
embedding of a word in its definition which has the largesireosimilarity with the
original word. Besides, the similarity should exceed aghoddd which we set to be
0.2 or we will use the word embedding of the target word seosgitialize its sense
embedding. Although these sense embeddings are simpbliired, they still contain
meaningful semantic information for training the definitionderstanding model and
reversely they will also be tuned by our model. Comparindnlite last step, we still
optimize the cosine similarities between embeddings prediby the RNN-based def-
inition understanding model and the initialized word semsdeddings. The difference
is that in this step we use definitions of both monosemous svand multi-sense words
and update all sense embeddings jointly including sensesddihgs of monosemous
words because some of them are of low quality if the words Bl@wofrequency in the
corpus their word embeddings are trained. The objectivetfon is as follows:

Jo = — Z Z co$(€ws, Ews) 3)

wWEV sES,y,

whereV is the whole word set anl,, is the set of word senses of wotd To sum up,
we make word sense embeddings and RNN-based definitionstadding model tune
each other in this step.

2.4 Training with Word Sense Embeddings to Represent Wordsi Definitions

In the previous two steps, we train the definition understemohodel and learn sense
embeddings jointly using word embeddings to represent svirdefinitions. However,
some words in definitions are multi-sense words and thezéfouse sense embeddings
to represent those words is assumed to be more appropréesigld3, it can also be seen
as an application of the word sense embeddings trained iiashstep.

To this end, we perform WSD for the words in definitions. Welg2C (simple
to complex) strategy described [ [2] to implement WSD. Spedly, we identify the
senses for words with less senses first and then for wordswathk senses. We compute
the cosine similarity between each sense embedding of awithidts context embed-
ding and choose the sense with greatest cosine similartytiné context embedding as
the sense of the word. The context embedding is the averalgedsting of some other
words in definitions. These words include nouns, verbs ctitlgss and adverbs. We use
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the sense embeddings of those words whose senses have eetiieid and use the
word embeddings of the rest words.

The objective function is the same as the previous step, buse sense embeddings
to represent words in definitions in this step and their sengeeddings are updated for
the optimization of the objective function.

3 Experiments

We present qualitative evaluations and quantitative ettedos in this section. To show
our word sense embeddings capture the semantics of wordssems present the near-
est neighbors of a word sense based on cosine similaritycestthe embedding of the
center word sense and embeddings of other word senseseBggicshow our model

can actually understand a definition or any description, vesgnt the most matched
word senses for a given description according to our RNNeth@gfinition understand-

ing model. In our quantitative evaluations, we evaluatestrese embeddings on word
similarity tasks and a word sense disambiguation task.

3.1 Setup

We use WordNet 3Mas the lexical ontology to acquire the definitions of wordssen

We choose the publicly released 300 dimensional véttoamed with Skip-granm[14]

on part of Google News dataset (about 100B words) as word editgs used in our
approach. We also take the word embeddings as our baselmeantiomly initialize

model parameters within (-0.012, 0.012) except that biasgeare initialized as zero
vectors. We adopt Adadelta [25] with mini-batch to minima& objective functions
and set the initial learning rate to be 0.12.

3.2 Qualitative Evaluations

To illustrate the quality of our word sense embeddings, veevstiie nearest neighbors
of words and of their senses in Table 1. The nearest neiglitbaverds are computed
using word embeddings. The nearest neighbors of word sersesomputed using
word sense embeddings trained with our definition unded#t@gnmodel which uses
GRU as its specific RNN. We leave out the sense numbers ofstesmeses because the
numbers are meaningless to be presented here. As can bdtmeeararest neighbors
of the center words are normally associated with the mosthetomsense of the word.
Whereas, the nearest neighbors of word senses are asdogitiighe corresponding
sense of the word. Besides, some nearest neighbours @gerhova”, "dainty”) are
rare to be seen in a corpus. Therefore it indicates even tieessmbeddings of rare
words are meaningful.

Although we train RNN-based definition understanding madehap a definition
to its sense embedding, we will show the RNN-based definitimherstanding model

! http://wordnet.princeton.edu/
2 https://code.google.com/archive/p/word2vec/
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|Center Word/Sengbearest Neighbors |

bank ATM machines, Iberiabank, automated teller machines
bankl financial, deposit, ATMs

bank?2 riverbank, water, slope

star matinee idol, singer, superstar

starl asteroid, celestial, supernova

star2 legend, standout, footballer

pretty wonderfully, unbelievably, nice

prettyl remarkably, extremely, obviously

pretty?2 beauteous, dainty, lovely

Table 1. Nearest neighbors based on cosine similarity between wottbddings or sense em-
beddings.

can also understand descriptions we made up. We computesirecsimilarities be-

tween the embedding produced by our model according to therigéion and all word

sense embeddings to find those most matched word sensesillhaise GRU as

the specific RNN. Tablg]2 shows the most matched word sengbs @iven descrip-

tions. The descriptions in the upper subfield are definitfoom WordNet and those in
the under subfield are casual descriptions made up by us.dtdst predicted words
match the meaning the descriptions convey and those thét elactly match (e.g.,

"gullible”, "falsifiable”) are semantically relevant. Th@redicted words of the descrip-
tions we make up are coincident with the descriptions. Thadtrates our definition

understanding model is effective to understand naturgidage.

|Description [Most Matched Words |
free of deceit aboveboard, gullible, genuing
causing one to believe the truth of something prove, convince, falsifiable

make (someone) agree, understand, or realize the truthids|eanvince, inform, acknowledge
ity of something ?

the place where people live in home, dwellings, inhabited
a machine we use every day counter, computer, dishwashpr
the animal which lives in the sea clam, nautilus, stonefish

Table 2. Using our definition understanding model to find the most medcword senses for
descriptions.

3.3 Quantitative Evaluations

Word Similarity Evaluation on WordSim-353 WordSim-353 dataset|[4] consists of
353 pairs of nouns which are associated with human judgneentbeir similarities
without context information. The evaluation metrics orsttataset is the Spearman’s
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rank correlation coefficientbetween the average human score and the cosine similarity
scores predicted by the system.

Following [819,21], we use weighted average of cosine sirties between each
possible word sense pair as the similarity of the two wordsceéthere is no context
provided, the weights can be uniformly distributed whicladopted by[[8,21] or be
determined by word sense frequency in the training set wisi@ddopted by([9]. We
choose to take the weights uniformly distributed. The foltoy equation describe the
weighted strategy:

ny N2

WeiSim(w, w’) = Z ZP(Sz‘|w)P(5j |w/)005(€w5“ ew;j) (4)

wherew andw’ are the two given words,; andn., are the number of senses of the two
words andb(s;|w) andp(s;|w’) are the normalized weights to usgands; to compute
similarity, e.,,, ande,,, - are sense embeddings.

System p x 100
Reisinger and MooneY [21] tf-idf (Wiki2.05B) |76.0

Huang et al.[[B] (0.99B) 71.3
Neelakantan et al.[19] (0.99B) 71.2

Wu and Giles|[[24] 73.9
lacobacci et al[]9] 77.9

SG (100B) 66.5

SG (100B)+Def (Word) (vanilla RNN) 67.4(+0.9)*
SG (100B)+Def (Word)+Def (Sense) (vanilla RNE3.2(+0.7)**
SG (100B)+Def (Word) (LSTM) 74.1(+7.6)*
SG (100B)+Def (Word)+Def (Sense) (LSTM)  |75.0(+0.9)**
SG (100B)+Def (Word) (GRU) 73.7(+7.2)*
SG (100B)+Def (Word)+Def (Sense) (GRU) 74.7(+1.0)*

Table 3. Performances on WordSim-353. The bottom subfield showsakenmance of differ-
ent settings of our system. SG represents just using wore:éditgs we acquired. Def (Word)
represents the step in which we use word embeddings to eire®rds in definitions to train
model and sense embeddings. Def (Sense) represents tle sta@ph we use sense embeddings
to represent words in definitions to train model and senseeddibgs. * indicates statistical sig-
nificant differences in t-test between performances of 8G#) and SG (100B)+Def (Word).
** indicates statistical significant differences in t-téstween performances of SG (100B)+Def
(Word) and SG (100B)+Def (Word)+Def (Sense) with the saméNRhbdel.

Tabld3 shows our results compared with previous approaBeésinger and Mooney
[21] propose to cluster the contexts of each word into gramgsmake each cluster a
distinct prototype vector. Huang et dll [8] also use corgéxtdetermine the number of
senses of a word and use global context to improve word reptatsons. Neelakantan
et al. [19] extend Skip-gram [14] to learn multiple embedgiper word. Wu and Giles
[24] cluster word senses and learn word sense embeddingsé&lated Wikipedia con-
cepts. lacobacci et al. ][9] use BabelNet][18] as the wordesémsentory and apply
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WSD to a corpus before they train word sense embeddings wdthtiious Bag of
Words (CBOW) architecturé [13].

As can be seen, our approach achieves significant improwesnenthe original
word embeddings we use. Most improvements come from theasteain word sense
embeddings with our RNN-based models when the definitioas@t represented by
word embeddings. We achieve further significant improvasieien we continue to
jointly train the model and learn sense embeddings usingesembeddings trained in
the previous step to represent words in definitions. It casdem as an application of
sense embeddings in a natural language understandingstagkalso illustrates our
sense embeddings are better than word embeddings for Hahgaage understanding
from the perspective of real-world natural language urtdeding tasks. The LSTM
version and GRU version present comparable performandeas tsed as the specific
RNN in definition understanding model and vanilla RNN pemfsrmuch worse than
the other two models. This is in accordance with what previeark illustrated about
the superiority of GRUs and LSTMs over vanilla RNN& [3,7].

Word Similarity Evaluation on Stanford’s Contextual Word S imilarities Since we
need a context to determine the sense of a word when we usertee embeddings in
real-world tasks and evaluation on context-free word siritif datasets does not allow
us to determine the sense, it cannot fully reveal the quafityur sense embeddings.
Stanford’s Contextual Word Similarities (SCWSE) [8] is aalaet which provides the
contexts of the target words. The way we determine the sdrtbe target words is the
same S2C strategy we described in Sediioh 2.4. Having dietednthe senses of the
target words, we compute cosine similarity of their senskeridings as their similarity.
The evaluation metrics is also the Spearman’s rank coiwalabefficientp between the
average human rating and the cosine similarity scores diyeyur approach.

System p x 100
Huang et al.[[B] (0.99B) 65.7

Chen et al.[[2] (1B)+WordNet 68.9

Tian et al. [23] (0.99B) 65.4
Neelakantan et al. [19] (0.99B) 69.3

Li et al. [11] (120B) 69.7

Liu et al. [12] (0.99B) 68.1

Wu and Giles|[[24] 66.4
lacobacci et al[]9] 62.4

SG (100B) 64.4

SG (100B)+Def (Word) (vanilla RNN) 66.2(+1.8)*
SG (100B)+Def (Word)+Def (Sense) (vanilla RNKE$.8(+0.6)**
SG (100B)+Def (Word) (LSTM) 68.9(+4.5)*
SG (100B)+Def (Word)+Def (Sense) (LSTM)  |69.5(+0.6)**
SG (100B)+Def (Word) (GRU) 69.1(+4.7)*
SG (100B)+Def (Word)+Def (Sense) (GRU) 69.5+0.4)**

Table 4. Performances for our system and other proposed approant®S\WS dataset.
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Table[4 shows our results compared to previous approacksids the models we
have mentioned, Chen et al. [2] use WordNet to acquire nurabsenses of words
and use definitions just to initialize sense embeddingslagaltrain sense embeddings
on a corpus processed with WSD model. Tian etlall [23] modetvpolysemy from
a probabilistic perspective and combine it with Skip-Grédd][model. Liu et al.[[12]
incorporate topic models into word sense embedding legrhiret al. [11] use Chinese
Restaurant Processes to determine the sense of a word amtheaense embeddings
jointly.

As can be seen, the improvements from each training steprodifproach are in
accordance with the results in WordSim-353 evaluation.MS&hd GRU also present
much more improvements than vanilla RNN. Our proposed aggprpresent high over-
all performance on both word similarity tasks. That illasés the word sense embed-
dings indeed capture the semantics of word senses. Ssjptlgking, the comparison
between different approaches are not totally fair becasedsources different ap-
proaches use are different.

Word Sense Disambiguation EvaluationWe also apply our word sense embeddings
in a word sense disambiguation task to show the word sensedairiys capture the
differences between senses of a word. In Semeval-2007ezgaamed all-words WSD
task [17], WordNet is used as the word sense inventory. Rugtlaluation of word sense
disambiguation result is on a coarser-grained version @itordNet sense inventory
and those word senses which are hard to disambiguate evienrfan are clustered into
one class. The version of WordNet used in this task is 2.1wuearn our word sense
embeddings with WordNet 3.0. So we use the sensélrbapveen the two versions
provided by the developers to address this issue. To contpareffectiveness of our
word sense embedding on this task with previous work, falhgwChen et al.[[2], we
still adopt the S2C strategy we described in Sedtioh 2.4 ¢ardbiguate word sense.
We also show the result produced by randomly choosing theesefwords according
to [2].

System F1

Random 62.7

Chen et al.[[2] (1B)+WordNet 75.8

SG (100B)+Def (Word) (vanilla RNN) 69.5

SG (100B)+Def (Word)+Def (Sense) (vanilla RNMY.3(+0.8)**
SG (100B)+Def (Word) (LSTM) 75.6

SG (100B)+Def (Word)+Def (Sense) (LSTM)  |76.4+0.8)**
SG (100B)+Def (Word) (GRU) 75.7

SG (100B)+Def (Word)+Def (Sense) (GRU) 76.3+0.6)**

Table 5. Performances on Semeval-2007 coarse-grained all-word3 t1&4k.

3 https://wordnet.princeton.edu/man/sensemap.5WN.html



10 Qi Li, Tianshi Li, and Baobao Chang

The results are shown in Taljle 5. After we train our model antthgense embed-
dings using sense embeddings to represent words in defisittur approach outper-
forms Chen et all[]2] on this task. It illustrates that ourseeambeddings can actually
distinguish different senses of a word and our approachcaably learn the semantics
of senses from definitions.

4 Related Work

Early word embedding learning approaches learn one embggeir word. Skip-gram
[14] and Glove[[20] are the most prevalent models of this kBath of them use context
information extracted from an unannotated corpus to leandw@mbeddings.

Since one embedding for each word sense are suggested ttidretiban a single
embedding for a word, many word sense embedding learningpapipes have been
proposed([21)8]2,19,23,9)12]24,11]. Researchers teagtémd Skip-gram and Glove
models to learn sense embeddings with WSI or WSD as a prelimiReisinger and
Mooney [21] propose to cluster the contexts of each word gmtmps and make each
cluster a distinct prototype vector. Huang et al. [8] defaarthe sense of a word by
clustering the contexts and then apply it to neural languageel with global context.
Guo et al. [[5] propose to use parallel data for WSI and legrminrd sense embed-
dings. Neelakantan et al. [19] extend Skip-gran [14] to a ehadhich jointly performs
word sense discrimination and embedding learning. Liu.¢18] associate words with
topics and then extend Skip-gram [14] to learn sense and tpbeddings. Wu and
Giles [24] propose to use Wikipedia concepts to cluster vgertses and to learn sense-
specific embeddings of words. Li et al. [11] use Chinese Rieatd Processes to deter-
mine the sense of a word and learn the sense embedding joatbbacci et al[[9] use
BabelNet[18] as the word sense inventory and opt for Baj&iy to perform WSD
on Wikipediﬂ. Then they train word sense embeddings using CBOW archie{t3
on the processed corpus. Chen ef al.[2] use WordNet as italentology to acquire
numbers of word senses and use the average word embeddirayadg whosen from
definitions as the initialization of sense embeddings. Awhtthey do WSD on a cor-
pus and train sense embeddings with a variant of Skip-gratheoorpus. Both of our
approaches use words in definitions to initialize word semsbeddings, but after that
their training still concentrates on the corpus while wéntaur model and word sense
embeddings with definitions. The disadvantage to use a sqymcessed by WSD or
WSI may come from the unreliability of the processing resaltd since a corpus for
embedding training is usually much larger in scale than thrersation of all the def-
initions to get satisfied result, their approach inevitatdpsumes much more time on
WSD and training.

5 Conclusion

In this paper, we propose to use RNN-based models to leard serse embeddings
from sense definitions. Our approach produces an effectiveral language under-
standing model and word sense embeddings of high qualitppaoing with previous

4 http://dumps.wikimedia.org/enwiki/
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work training word sense embeddings on a corpus, our appis&ess time-consuming
and better for rare word senses. Experimental results showard sense embeddings
are of high quality.
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