Skip to main content

Biometric Technologies for Forensic Science and Policing: State of the Art

  • Chapter
  • First Online:
Handbook of Biometrics for Forensic Science

Abstract

In the last decades, biometric technologies have been applied in forensic investigations only to a limited extent of their possibilities. A number of factors have hindered the wider adoption of these technologies to operational scenarios. However, there have been a number of successful applications where biometric technologies were crucial to support investigation and to provide evidence in court. Given the great potential of biometric technologies for objective and quantitative evidence evaluation, it would be desirable to see a wider deployment of these technologies, in a standardized manner, among police forces and forensic institutes. In this chapter, after a review of the actual state of the art in forensic biometric systems, we try to identify some avenues to facilitate the application of advanced biometric technologies in forensic practice. Despite their impressive performance, some recent biometric technologies have never been applied to forensic evaluation. Other technologies will need adaptations to be ready for the forensic field. We postulate that there is a challenge to be faced with more advanced tools and testing on operational data. This will require a joint effort involving stakeholders and scientists from multiple disciplines as well as a greater involvement of forensic institutes and police forensic science departments.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Amraoui M, Abouchabaka J, Aroussi ME (2014) Finger knuckle print recognition based on multi-instance fusion of local feature sets. In: 2014 international conference on multimedia computing and systems (ICMCS), 14–16 April 2014, pp 87–92. doi:10.1109/ICMCS.2014.6911188

  2. Bertillon A (1890) La photographie judiciaire avec un appendice sur la classification et l’identification anthropométrique. Bibliothèque photographique. Gauthier-Villars et fils, Paris

    Google Scholar 

  3. Bertillon A (1893) Instructions signalétiques. Imprimerie administrative, Melun

    Google Scholar 

  4. Best-Rowden L, Han H, Otto C, Klare BF, Jain AK (2014) Unconstrained face recognition: identifying a person of interest from a media collection. IEEE Trans Inf Forensics Secur 9(12):2144–2157. doi:10.1109/TIFS.2014.2359577

    Article  Google Scholar 

  5. Birch I, Raymond L, Christou A, Fernando MA, Harrison N, Paul F (2013) The identification of individuals by observational gait analysis using closed circuit television footage. Sci Justice 53(3):339–342. doi:10.1016/j.scijus.2013.04.005

    Article  Google Scholar 

  6. Black S, MacDonald-McMillan B, Mallett X (2014) The incidence of scarring on the dorsum of the hand. Int J Legal Med 128(3):545–553. doi:10.1007/s00414-013-0834-7

    Article  Google Scholar 

  7. Black S, MacDonald-McMillan B, Mallett X, Rynn C, Jackson G (2014) The incidence and position of melanocytic nevi for the purposes of forensic image comparison. Int J Legal Med 128(3):535–543. doi:10.1007/s00414-013-0821-z

    Article  Google Scholar 

  8. Black SM, Mallett X, Rynn C, Duffield N (2009) Forensic hand image comparison as an aid for paedophile investigations. Police Prof 184:21–24

    Google Scholar 

  9. Blanz V, Vetter T (1999) A morphable model for the synthesis of 3D faces. In: Proceedings of the 26th annual conference on computer graphics and interactive techniques (SIGGRAPH’99). ACM Press/Addison-Wesley Publishing Co., New York, NY, USA, pp 187–194. doi:http://dx.doi.org/10.1145/311535.311556

  10. Butler JM (2010) Fundamentals of forensic DNA typing. Elsevier, Academic Press, Amsterdam

    Google Scholar 

  11. Butler JM (2015) Advanced topics in forensic DNA typing: interpretation. Elsevier, Academic Press, Amsterdam

    Google Scholar 

  12. Cadoni M, Bicego M, Grosso E (2009) 3D face recognition using joint differential invariants, advances in biometrics. In: Proceedings of the 3rd international conference on biometrics, ICB 2009, pp 279–288. doi:10.1007/978-3-642-01793-3_29

  13. Campbell JP, Shen W, Campbell WM, Schwartz R, Bonastre JF, Matrouf D (2009) Forensic speaker recognition—a need for caution. IEEE Signal Process Mag 26(2):95–103. doi:10.1109/MSP.2008.931100

    Article  Google Scholar 

  14. Champod C (2013) Overview and meaning of identification/individualization. In: Siegel JA, Saukko PJ (eds) Encyclopedia of forensic sciences. Academic Press, Waltham, pp 303–309. doi:10.1016/B978-0-12-382165-2.00197-5

  15. Champod C, Lennard CJ, Margot PA, Stoilovic M (2016) Fingerprints and other ridge skin impressions, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  16. Chapman CL (1992) Dr. Juan Vucetich: his contribution to the science of fingerprints. J Forensic Ident 42(4):286–294

    Google Scholar 

  17. Choi J, Medioni G, Lin Y, Silva L, Pereira Bellon OR, Pamplona M, Faltemier TC (2010) 3D Face reconstruction using a single or multiple views. In: 20th international conference on pattern recognition ICPR 2010, Istanbul, Turkey, 23–26 Aug 2010, pp 3963–3966. doi:10.1109/ICPR.2010.963

  18. Choras M (2009) Ear biometrics. In: Li SZ, Jain A (eds) Encyclopedia of biometrics. Springer, New York. doi:10.1007/978-0-387-73003-5_173

  19. Cole S (2001) Suspect identities: a history of fingerprinting and criminal identification. Harvard University Press, Cambridge

    Google Scholar 

  20. Daugman J (2003) The importance of being random: statistical principles of iris recognition. Pattern Recognit 36(2):279–291. doi:10.1016/S0031-3203(02)00030-4

    Article  Google Scholar 

  21. Daugman J (2006) Probing the uniqueness and randomness of IrisCodes: results from 200 billion iris pair comparisons. Proc IEEE 94(11):1927–1935. doi:10.1109/JPROC.2006.884092

    Article  Google Scholar 

  22. Daugman J, Downing C (2001) Epigenetic randomness, complexity, and singularity of human iris patterns. Proc Royal Soc Biol Sci B 268:1737–1740. doi:10.1098/rspb.2001.1696

  23. Daugman JG (1993) High confidence visual recognition of persons by a test of statistical independence. IEEE Trans Pattern Anal Mach Intell 15(11):1148–1161. doi:10.1109/34.244676

    Article  Google Scholar 

  24. Dessimoz D, Champod C (2007) Linkages between biometrics and forensic science. In: Flynn PJ, Jain AK, Ross A (eds) Handbook of biometrics. Springer, New York, pp 425–459. doi:10.1007/978-0-387-71041-9_21

    Google Scholar 

  25. Dessimoz D, Champod C (2015) A dedicated framework for weak biometrics in forensic science for investigation and intelligence purposes: the case of facial information. Secur J (special issue on traceology) 29(4):603–617. doi:10.1057/sj.2015.32

  26. DiMaggio JA, Vernon W (2011) Forensic gait analysis. In: Forensic podiatry: principles and methods. Humana Press, Totowa, NJ, pp 103–115. doi:10.1007/978-1-61737-976-5_6

  27. Dorion RBJ (2005) Bitemark evidence. Forensic science. Marcel Dekker, New York

    Google Scholar 

  28. Drygajlo A, Jessen M, Gfroerer S, Wagner I, Vermeulen J, Niemi T (2016) Methodological Guidelines for Best Practice in Forensic Semiautomatic and Automatic Speaker Recognition. Verlag für Polizeiwissenshaften, Frankfurt

    Google Scholar 

  29. Gold E, Peter F (2011) International practices in forensic speaker comparison. Int J Speech Lang Law 18(2):293–307. doi:10.1558/ijsll.v18i2.293

    Article  Google Scholar 

  30. Gonzalez-Rodriguez J, Rose P, Ramos D, Toledano DT, Ortega-Garcia J (2007) Emulating DNA: rigorous quantification of evidential weight in transparent and testable forensic speaker recognition. IEEE Trans Audio Speech Lang Process 15(7):2104–2115. doi:10.1109/TASL.2007.902747

    Article  Google Scholar 

  31. Grimson WEL (1981) From images to surfaces: a computational study of the human early vision system. MIT Press

    Google Scholar 

  32. Grother PJ, Ngan ML (2014) Face recognition vendor test (FRVT)—performance of face identification algorithms, NIST interagency report 8009. National Institute for Standards and Technology, Gaithersburgh

    Google Scholar 

  33. Grother PJ, Quinn GW, Matey JR, Ngan ML, Salamon WJ, Fiumara GP, Watson CI (2012) IREX III: performance of iris identification algorithms, NIST interagency report 7836. National Institute of Standard and Technology, Gaithersburg

    Book  Google Scholar 

  34. Hassner T (2013) Viewing real-world faces in 3D. In: International conference on computer vision (ICCV), Sydney, Australia, pp 3607–3614

    Google Scholar 

  35. Hoogstrate AJ, van den Heuvel C, Huyben E (2001) Ear identification based on surveillance camera images. Sci Justice 41(3):167–172. doi:10.1016/S1355-0306(01)71885-0

    Article  Google Scholar 

  36. Hopwood AJ, Puch-Solis R, Tucker VC, Curran JM, Skerrett J, Pope S, Tully G (2012) Consideration of the probative value of single donor 15-plex STR profiles in UK populations and its presentation in UK courts. Sci Justice 52(3):185–190. doi:10.1016/j.scijus.2012.05.005

    Article  Google Scholar 

  37. Horn BKP, Brooks MJ (eds) (1989) Shape from shading. MIT Press

    Google Scholar 

  38. Huber RA, Headrick AM (1999) Handwriting identification: facts and fundamentals. CRC Press, Boca Raton

    Book  Google Scholar 

  39. Hu Y, Jiang D, Yan S, Zhang L (2004) Automatic 3D reconstruction for face recognition. In Proceedings of 6th IEEE international conference on automatic face and gesture recognition, FRGC 2004. IEEE, pp 843–848. doi:10.1109/AFGR.2004.1301639

  40. Hurley DJ, Nixon MS (2009) Physical analogies for ear recognition. In: Li SZ, Jain A (eds) Encyclopedia of biometrics. Springer, New York. doi:10.1007/978-0-387-73003-5_172

  41. Indovina M, Dvornychenko V, Hicklin RA, Kiebuzinski GI (2012) ELFT‐EFS evaluation of latent fingerprint technologies: extended feature sets [Evaluation #2]. vol NISTIR 7859. National Institute of Standards and Technology, Gaithersburg

    Google Scholar 

  42. Indovina M, Hicklin RA, Kiebuzinski GI (2011) ELFT-EFS Evaluation of latent fingerprint technologies: extended feature [Sets Evaluation #1]. National Institute of Standards and Technology, Gaithersburg

    Google Scholar 

  43. Jackson G, Black S (2014) Use of data to inform expert evaluative opinion in the comparison of hand images—the importance of scars. Int J Legal Med 128(3):555–563. doi:10.1007/s00414-013-0828-5

    Article  Google Scholar 

  44. Jackson G, Jones S, Booth G, Champod C, Evett IW (2006) The nature of forensic science opinion—a possible framework to guide thinking and practice in investigations and in court proceedings. Sci Justice 46(1):33–44. doi:10.1016/S1355-0306(06)71565-9

    Article  Google Scholar 

  45. Jaha ES, Nixon MS (2014) Soft biometrics for subject identification using clothing attributes. In: 2014 IEEE international joint conference on biometrics (IJCB), Sept 29 2014–Oct 2 2014, pp 1–6. doi:10.1109/BTAS.2014.6996278

  46. Jain AK, Klare B, Park U (2012) Face matching and retrieval in forensics applications. IEEE Multimed 19(1):20. doi:10.1109/MMUL.2012.4

    Article  Google Scholar 

  47. Jain AK, Nandakumar K, Ross A (2016) 50 years of biometric research: accomplishments, challenges, and opportunities. Pattern Recog Lett 79:80–105. doi:10.1016/j.patrec.2015.12.013

    Article  Google Scholar 

  48. Jain AK, Ross A (2015) Bridging the gap: from biometrics to forensics. Philos Trans Royal Soc Lond B: Biol Sci 370 (1674). doi:10.1098/rstb.2014.0254

  49. Junod S, Champod C (2012) Earprint comparison: automated systems. In: Jamieson A, Moenssens AA (eds) Wiley encyclopedia of forensic science. John Wiley, Chichester. doi:10.1002/9780470061589.fsa1033

  50. Junod S, Pasquier J, Champod C (2012) The development of an automatic recognition system for earmark and earprint comparisons. Forensic Sci Int 222(1–3):170–178. doi:10.1016/j.forsciint.2012.05.021

    Article  Google Scholar 

  51. Kemelmacher-Shlizerman I, Basri R (2011) 3D face reconstruction from a single image using a single reference face shape. IEEE TPAMI 33(2):394–405. doi:10.1109/TPAMI.2010.63

    Article  Google Scholar 

  52. Klare B, Li Z, Jain AK (2011) Matching forensic sketches to mug shot photos. IEEE Trans Pattern Anal Mach Intell 33(3):639–646. doi:10.1109/TPAMI.2010.180

    Article  Google Scholar 

  53. Klontz JC, Jain AK (2013) A case study of automated face recognition: the Boston marathon bombings suspects. IEEE Comput 46(11):91–94 . doi:10.1109/MC.2013.377

  54. Klum S, Han H, Jain AK, Klare B (2013) Sketch based face recognition: forensic vs. composite sketches. In: 2013 international conference on biometrics (ICB), 4–7 June 2013, pp 1–8. doi:10.1109/ICB.2013.6612993

  55. Kumar A (2012) Can we use minor finger knuckle images to identify humans? In: 2012 IEEE fifth international conference on biometrics: theory, applications and systems (BTAS), 23–27 Sept 2012, pp 55–60. doi:10.1109/BTAS.2012.6374558

  56. Kumar A (2014) Importance of being unique from finger dorsal patterns: exploring minor finger knuckle patterns in verifying human identities. IEEE Trans Inf Forensics Secur 9(8):1288–1298. doi:10.1109/TIFS.2014.2328869

    Article  Google Scholar 

  57. Kumar A, Ravikanth C (2009) Personal authentication using finger knuckle surface. IEEE Trans Inf Forensics Secur 4(1):98–109. doi:10.1109/TIFS.2008.2011089

    Article  Google Scholar 

  58. Kumar A, Wu C (2012) Automated human identification using ear imaging. Pattern Recognit 45(3):956–968. doi:10.1016/j.patcog.2011.06.005

    Article  Google Scholar 

  59. Kumar A, Xu Z (2014) Can we use second minor finger knuckle patterns to identify humans? In: 2014 IEEE conference on computer vision and pattern recognition workshops, 23–28 June 2014, pp 106–112. doi:10.1109/CVPRW.2014.21

  60. Larsen PK, Simonsen EB, Lynnerup N (2008) Gait analysis in forensic medicine. J Forensic Sci 53(5):1149–1153. doi:10.1111/j.1556-4029.2008.00807.x

    Article  Google Scholar 

  61. Lee J, Jin R, Jain AJ, Tong W (2012) Image retrieval in forensics: tattoo image database application. IEEE Multimed 19(1):40–49. doi:10.1109/MMUL.2011.59

    Article  Google Scholar 

  62. Ludwig O, Dillinger S, Marschall F (2016) Intra-individual gait pattern variability in specific situations: Implications for forensic gait analysis. Forensic Sci Int 264:15–23. doi:10.1016/j.forsciint.2016.02.043

    Article  Google Scholar 

  63. Lynnerup N, Vedel J (2005) Person identification by gait analysis and photogrammetr. J Forensic Sci 50(1):1–7. doi:10.1520/JFS2004054

    Article  Google Scholar 

  64. Makihara Y, Matovski DS, Nixon MS, Carter JN, Yagi Y (2015) Gait recognition: databases, representations, and applications. Wiley Encyclopedia of Electrical and Electronics Engineering, pp 1–15. doi:10.1002/047134608X.W8261

  65. Meagher S, Dvornychenko V, Garris M (2014) Characterization of latent print “lights-out” modes for automated fingerprint identification systems. J Forensic Ident 64(3):255–284

    Google Scholar 

  66. Meuwly D (2006) Forensic individualisation from biometric data. Sci Justice 46(4):205–213. doi:10.1016/S1355-0306(06)71600-8

    Article  Google Scholar 

  67. Meuwly D, Ramos D, Haraksim R (to appear) A guideline for the validation of likelihood ratio methods used for forensic evidence evaluation. Forensic Sci Int. doi:10.1016/j.forsciint.2016.03.048

  68. Meuwly D, Veldhuis R (2012) Forensic biometrics: from two communities to one discipline. In: Proceedings of the international conference of the biometrics special interest group (BIOSIG), 2012 BIOSIG, 6–7 Sept 2012, pp 1–12

    Google Scholar 

  69. Moses K (2011) Chapter 6: Automatic fingerprint identification systems (AFIS). In: McRoberts A (ed) The fingerprint sourcebook. National Institute of Justice, Washington DC, pp 6-1–6-33

    Google Scholar 

  70. National Research Council (2009) Strengthening forensic science in the United States: a path forward. The National Academies Press, Washington, DC

    Google Scholar 

  71. Neumann C, Evett IW, Skerrett J (2012) Quantifying the weight of evidence from a forensic fingerprint comparison: a new paradigm. J Roy Stat Soc Ser A (Stat Soc) 175(Part 2):371–415 (with discussion)

    Google Scholar 

  72. Neustein A, Patil HA (eds) (2012) Forensic speaker recognition. Springer, New York. doi:10.1007/978-1-4614-0263-3

    Google Scholar 

  73. Nixon MS, Correia PL, Nasrollahi K, Moeslund TB, Hadid A, Tistarelli M (2015) On soft biometrics. Pattern Recog Lett 68(Part 2):218–230. doi:10.1016/j.patrec.2015.08.006

    Article  Google Scholar 

  74. Nixon MS, Tan TN, Chellappa R (2006) Human identification based on gait. International series on biometrics. Springer, New York. doi:10.1007/978-0-387-29488-9

    Book  Google Scholar 

  75. Raghavendra R, Surbiryala J, Busch C (2015) Hand dorsal vein recognition: sensor, algorithms and evaluation. In: 2015 IEEE international conference on imaging systems and techniques (IST), 16–18 Sept. 2015, pp 1–6. doi:10.1109/IST.2015.7294557

  76. Ramos D, Gonzalez-Rodriguez J (2013) Reliable support: measuring calibration of likelihood ratios. Forensic Sci Int 230(1–3):156–169. doi:10.1016/j.forsciint.2013.04.014

    Article  Google Scholar 

  77. Ramos D, Gonzalez-Rodriguez J, Zadora G, Aitken C (2013) Information-theoretical assessment of the performance of likelihood ratio computation methods. J Forensic Sci 58(6):1503–1518. doi:10.1111/1556-4029.12233

    Article  Google Scholar 

  78. Ramos-Castro D, Gonzalez-Rodriguez J, Ortega-Garcia J (2006) Likelihood ratio calibration in a transparent and testable forensic speaker recognition framework. In: Speaker and language recognition workshop, 2006. IEEE Odyssey 2006: The, 28–30 June 2006, pp 1–8. doi:10.1109/ODYSSEY.2006.248088

  79. Reid DA, Samangooei S, Chen C, Nixon M, Ross A (2013) Soft biometrics for surveillance: an overview. In: Govindaraju V, Rao CR (eds) Handbook of statistics, vol 31. Elsevier, North Holland, Amsterdam, pp 327–352. doi:10.1016/B978-0-44-453859-8.00013-8

  80. Roth J, Tong Y, Liu X (2015) Unconstrained 3D face reconstruction. In: The IEEE conference on computer vision and pattern recognition (CVPR), pp 2606–2615. doi:10.1109/CVPR.2015.7298876

  81. Sandini G, Tistarelli M (1990) Active tracking strategy for monocular depth inference over multiple frames. IEEE Trans PAMI PAMI-11(12):13–27. doi:10.1109/34.41380

  82. Sannié C (1950) Alphonse Bertillon et la dactyloscopie. L’affaire Scheffer. Revue internationale de police criminelle 5(41):255–262

    Google Scholar 

  83. Schwartz R, Campbell JP, Shen W (2011) When to punt on speaker comparison? J Acoust Soc Am 130(4):2547. doi:10.1121/1.3655180

    Article  Google Scholar 

  84. Spaun NA (2011) Face recognition in forensic science. In: Li SZ, Jain AK (eds) Handbook of face recognition. Springer International Publishing, pp 655–670. doi:10.1007/978-0-85729-932-1_26

  85. Stevenage SV, Walpole C, Neil GJ, Black SM (2015) Testing the reliability of hands and ears as biometrics: the importance of viewpoint. Psychol Res 79(6):989–999. doi:10.1007/s00426-014-0625-x

    Article  Google Scholar 

  86. Tistarelli M, Grosso E, Meuwly D (2014) Biometrics in forensic science: challenges, lessons and new technologies. In: Cantoni V, Dimov D, Tistarelli M (eds) Biometric authentication: first international workshop, BIOMET 2014, Sofia, Bulgaria, June 23–24, 2014. Revised Selected Papers. Springer International Publishing, Cham, pp 153–164. doi:10.1007/978-3-319-13386-7_12

  87. Tistarelli M, Cadoni M, Lagorio A (2016) Matching reconstructed 3D face shapes. Personal communication

    Google Scholar 

  88. Tistarelli M, Cadoni M, Lagorio A, Grosso E (2016) Blending 2D and 3D face recognition. In: Bourlai T (ed) Face recognition across the imaging spectrum. Springer International Publisher, pp 305–331. doi:10.1007/978-3-319-28501-6_13

  89. Tome P, Fierrez J, Vera-Rodriguez R, Nixon MS (2014) Soft biometrics and their application in person recognition at a distance. IEEE Trans Inf Forensics Secur 9(3):464–475. doi:10.1109/TIFS.2014.2299975

    Article  Google Scholar 

  90. Tome P, Fierrez J, Vera-Rodriguez R, Ramos D (2013) Identification using face regions: application and assessment in forensic scenarios. Forensic Sci Int 233(1–3):75–83. doi:10.1016/j.forsciint.2013.08.020

    Article  Google Scholar 

  91. Tome P, Vera-Rodriguez R, Fierrez J, Ortega-Garcia J (2015) Facial soft biometric features for forensic face recognition. Forensic Sci Int 257:271–284. doi:10.1016/j.forsciint.2015.09.002

    Article  Google Scholar 

  92. Van der Lugt C (2001) Earprint identification. Elsevier’s-Gravenhage

    Google Scholar 

  93. Venugopalan S, Prasad U, Harun K, Neblett K, Toomey D, Heyman J, Savvides M (2011) Long range iris acquisition system for stationary and mobile subjects. In: 2011 international joint conference on biometrics (IJCB), 11–13 Oct 2011, pp 1–8. doi:10.1109/IJCB.2011.6117484

  94. Willis SM et al (2015) ENFSI guideline for evaluative reporting in forensic science. European Network of Forensic Science Institutes, Dublin. http://enfsi.eu/sites/default/files/documents/external_publications/m1_guideline.pdf

    Google Scholar 

  95. Yamashita BA, Kennedy RB (2009) Forensic barefoot comparison. In: Li SZ, Jain A (eds) Encyclopedia of biometrics. Springer, New York. doi:10.1007/978-0-387-73003-5_181

  96. Zhang L, Zhang L, Zhang D, Zhu H (2010) Online finger-knuckle-print verification for personal authentication. Pattern Recognit 43(7):1571–2560. doi:10.1016/j.patcog.2010.01.020

    MATH  Google Scholar 

  97. Zhang L, Zhang L, Zhang D, Zhu H (2011) Ensemble of local and global information for finger–knuckle-print recognition. Pattern Recognit 44(9):1990–1998. doi:10.1016/j.patcog.2010.06.007

    Article  Google Scholar 

Download references

Acknowledgements

This research is based upon work supported by the European Commission under the project COST IC1106 “Biometrics and Forensics for the Digital Age” and H2020 MSCA RISE 690907 “IDENTITY”.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christophe Champod .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Champod, C., Tistarelli, M. (2017). Biometric Technologies for Forensic Science and Policing: State of the Art. In: Tistarelli, M., Champod, C. (eds) Handbook of Biometrics for Forensic Science. Advances in Computer Vision and Pattern Recognition. Springer, Cham. https://doi.org/10.1007/978-3-319-50673-9_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50673-9_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50671-5

  • Online ISBN: 978-3-319-50673-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics