Skip to main content

Contact-Free Heartbeat Signal for Human Identification and Forensics

  • Chapter
  • First Online:

Part of the book series: Advances in Computer Vision and Pattern Recognition ((ACVPR))

Abstract

The heartbeat signal, which is one of the physiological signals, is of great importance in many real-world applications, for example, in patient monitoring and biometric recognition. The traditional methods for measuring such this signal use contact-based sensors that need to be installed on the subject’s body. Though it might be possible to use touch-based sensors in applications like patient monitoring, it will not be that easy to use them in identification and forensics applications, especially if subjects are not cooperative. To deal with this problem, recently computer vision techniques have been developed for contact-free extraction of the heartbeat signal. We have recently used the contact-free measured heartbeat signal, for biometric recognition, and have obtained promising results, indicating the importance of these signals for biometrics recognition and also for forensics applications. The importance of heartbeat signal, its contact-based and contact-free extraction methods, and the results of its employment for identification purposes, including our very recent achievements, are reviewed in this chapter.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   79.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Ehrlich D, Carey L, Chiou J, Desmarais S, El-Difrawy S, Koutny L, Lam R, Matsu-daira P, Mckenna B, Mitnik-Gankin L, ONeil T, Novotny M, Srivastava A, Streechon P, Timp W (2002) MEMS-based systems for DNA sequencing and forensics. In: Proceedings of IEEE Sensors, vol 1, pp 448–449

    Google Scholar 

  2. Lin WS, Tjoa SK, Zhao HV, Liu KJR (2009) Digital image source coder forensics via intrinsic fingerprints. IEEE Trans Inf Forensics Secur 4(3):460–475

    Article  Google Scholar 

  3. Roussev V (2009) Hashing and data fingerprinting in digital forensics. IEEE Secur Priv 8(2):49–55

    Article  Google Scholar 

  4. Peacock C, Goode A, Brett A (2004) Automatic forensic face recognition from digital images. Sci Justice 44(1):29–34

    Article  Google Scholar 

  5. Jain AK, Unsang P (2009) Facial marks: soft biometric for face recognition. In: 16th IEEE international conference on image processing (ICIP), pp 37–40

    Google Scholar 

  6. Unsang P, Jain AK (2010) Face matching and retrieval uses soft biometrics. IEEE Trans Inf Forensics Secur 3:406–415

    Google Scholar 

  7. Han H, Otto C, Liu X, Jain A (2014) Demographic estimation from face images: human versus machine performance. IEEE Trans Pattern Anal Mach Intell 99

    Google Scholar 

  8. Jain AK, Klare B, Unsang P (2011) Face recognition: some challenges in forensics. In: 2011 IEEE international confer-ence on automatic face gesture recognition and workshops (FG 2011), pp 726–733

    Google Scholar 

  9. Wagner J, Jonghwa K, Andre E (2005) From physiological signals to emotions: implementing and comparing selected methods for feature extraction and classification. In: IEEE international conference on multimedia and expo, pp 940–943

    Google Scholar 

  10. Li L, Chen J (2006) Emotion recognition using physiological signals. Adv Artif Reality Tele-Existence Lect Notes Comput Sci Springer 4282:437–446

    Article  Google Scholar 

  11. Kuriakose S, Sarkar N, Lahiri U (2012) A step towards an intelligent Human Computer Interaction: Physiology-based affect-recognizer. In: 4th international conference on intelligent human computer interaction (IHCI), pp 1–6

    Google Scholar 

  12. Liao W, Zhang W, Zhu Z, Ji Q (2005) A real-time human stress monitoring system using dynamic Bayesian network. In: IEEE computer society conference on computer vision and pattern recognition—workshops

    Google Scholar 

  13. Zhai J, Barreto A (2006) Stress detection in computer users through non-invasive monitoring of physiological signals. Biomed Sci Instrum 42:495–500

    Google Scholar 

  14. Barreto A, Zhai J, Adjouadi M (2007) Non-intrusive physiological monitoring for automated stress detection in human-computer interaction. Human-Comput Interact Lect Notes Comput Sci Springer 4796:29–38

    Article  Google Scholar 

  15. Liu C, Torralba A, Freeman WT, Durand F, Adelson EH (2005) Motion magnification. ACM Trans Graph 24(3):519–526

    Article  Google Scholar 

  16. Wu HY, Rubinstein M, Shih E, Guttag J, Durand F, William TF (2012) Eulerian video magnification for revealing subtle changes in the world. In: Proceedings of SIGGRAPHACM transactions on graphics, vol 31, no 4

    Google Scholar 

  17. Balakrishnan G, Durand F, Guttag J (2013) Detecting pulse from head motions in video. In: IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp 3430–3437

    Google Scholar 

  18. Irani R, Nasrollahi K, Moeslund TB (2014) Improved pulse detection from head motions using DCT. In: 9th International Conference on Computer Vision Theory and Applications, vol 3, pp 118–124

    Google Scholar 

  19. Poh MZ, McDuff DJ, Picard R (2010) Non-contact, automated cardiac pulse measurements using video imaging and blind source separation. Opt Express 18:10762–10774

    Article  Google Scholar 

  20. Poh MZ, McDuff DJ, Picard R (2011) Advancements in noncontact, multiparameter physiological measurements using a webcam. IEEE Trans Biomed Eng 58:7–11

    Article  Google Scholar 

  21. Sarkar A, Abbott AL, Doerzaph Z (2014) Assessment of psychophysiological characteristics using heart rate from naturalistic face video data. In: IEEE interna-tional joint conference on biometrics (IJCB)

    Google Scholar 

  22. Tarassenko L, Villarroel M, Guazzi A, Jorge J, Clifton DA, Pugh C (2014) Non-contact video-based vital sign monitoring using ambient light and autoregressive models. Physiol Meas 35:807–831

    Article  Google Scholar 

  23. Li X, Chen J, Zhao G, Pietikainen M (2014) Remote heart rate measurement from face videos under realistic situations. In: IEEE conference on computer vision and pattern recognition (CVPR), pp 4264–4271

    Google Scholar 

  24. Soleymani M, Lichtenauer J, Pun T, Pantic M (2012) A multimodal database for affect recognition and implicit tagging. IEEE Trans Affect Comput 3(1):42–55

    Article  Google Scholar 

  25. Biel L, Pettersson O, Philipson L, Wide P (2001) ECG analysis: a new approach in human identification. IEEE Trans Instrum Measur 50(3):808–812

    Article  Google Scholar 

  26. Hoekema R, Uijen GJH, van Oosterom A (2001) Geometrical aspects of the interindividual variability of multilead ECG recordings. IEEE Trans Biomed Eng 48(5):551–559

    Article  Google Scholar 

  27. Israel SA, Irvine JM, Cheng A, Wiederhold MD, Wiederhold BK (2005) ECG to identify individuals. Pattern Recogn 38(1):133–142

    Article  Google Scholar 

  28. Wang Y, Plataniotis KN, Hatzinakos D (2006) Integrating analytic and appearance attributes for human identification from ECG signals, In: Biometrics symposium: special session on research at the biometric consortium conference

    Google Scholar 

  29. Plataniotis KN, Hatzinakos D, Lee JKM (2006) ECG biometric recognition without fiducial detection. In: Biometrics symposium: special session on research at the biometric consortium conference

    Google Scholar 

  30. Singh YN, Gupta P (2008) ECG to individual identification. In: 2nd IEEE international conference on biometrics: theory, applications and systems

    Google Scholar 

  31. Fatemian SZ, Hatzinakos D (2009) A new ECG feature extractor for biometric recognition. In: 2009 16th international conference on digital signal processing

    Google Scholar 

  32. Odinaka I, Po-Hsiang L, Kaplan AD, O’Sullivan JA, Sirevaag EJ, Kristjansson SD, Sheffield AK, Rohrbaugh JW (2010) ECG biometrics: a robust short-time frequency analysis. In: IEEE international workshop on information forensics and security (WIFS)

    Google Scholar 

  33. Coutinho DP, Fred ALN, Figueiredo MAT (2010) One-lead ECG-based personal identification using Ziv-Merhav cross parsing. In: 20th international conference on pattern recognition (ICPR), pp 3858–3861

    Google Scholar 

  34. Can Y, Coimbra MT, Kumar BVKV (2010) Investigation of human identification using two-lead Electrocardiogram (ECG) signals. In: Fourth IEEE international conference on biometrics: theory applications and systems (BTAS)

    Google Scholar 

  35. Islam MS, Alajlan N, Bazi Y, Hichri HS (2012) HBS: A novel biometric feature based on heartbeat morphology. IEEE Trans Inf Technol Biomed 16(3):445–453

    Article  Google Scholar 

  36. Tantawi M, Revett K, Tolba MF, Salem A (2012) A novel feature set for deployment in ECG based biometrics. In: 7th international conference on computer engineering systems (ICCES), pp 186–191

    Google Scholar 

  37. Wang J, She M, Nahavandi S, Kouzani A (2013) Human identification from ECG signals via sparse representation of local segments. IEEE Sign Proces Lett 20(10):937–940

    Article  Google Scholar 

  38. Fratini A, Sansone M, Bifulco P, Romano M, Pepino A, Cesarelli M, D’Addio G (2013) Individual identification using electrocardiogram morphology. In: 2013 IEEE international symposium on medical measurements and applications proceedings (MeMeA), pp 107–110

    Google Scholar 

  39. Rabhi E, Lachiri Z (2013) Biometric personal identification system using the ECG signal. In: Computing in cardiology conference (CinC), pp 507–510

    Google Scholar 

  40. Ming L, Xin L (2014) Verification based ECG biometrics with cardiac irregular conditions using heartbeat level and segment level information fusion. In: IEEE international conference on acoustics, speech and signal processing (ICASSP), pp 3769–3773

    Google Scholar 

  41. Lourenco A, Carreiras C, Silva H, Fred A (2014) ECG biometrics: A template selection approach. In: IEEE international symposium on medical measurements and applications (MeMeA)

    Google Scholar 

  42. Nomura R, Ishikawa Y, Umeda T, Takata M, Kamo H, Joe K (2014) Biometrics authentication based on chaotic heartbeat waveform, In: Biomedical engineering international conference (BMEiCON)

    Google Scholar 

  43. Haque MA, Nasrollahi K, Moeslund TB (2015) Heartbeat signal from facial video for biometric recognition. In: Proceedings of 19th Scandinavian conference on image analysis

    Google Scholar 

  44. Hegde C, Prabhu HR, Sagar DS, Shenoy PD, Venugopal KR, Patnaik LM (2011) Heartbeat biometrics for human authentication. SIViP 5(4):485–493

    Article  Google Scholar 

  45. Van de Haar H, Van Greunen D, Pottas D (2013) The characteristics of a biometric. In: Information security for South Africa

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohammad A. Haque .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Nasrollahi, K., Haque, M.A., Irani, R., Moeslund, T.B. (2017). Contact-Free Heartbeat Signal for Human Identification and Forensics. In: Tistarelli, M., Champod, C. (eds) Handbook of Biometrics for Forensic Science. Advances in Computer Vision and Pattern Recognition. Springer, Cham. https://doi.org/10.1007/978-3-319-50673-9_13

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50673-9_13

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50671-5

  • Online ISBN: 978-3-319-50673-9

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics