Skip to main content

Virtual Reality Integration with Force Feedback in Upper Limb Rehabilitation

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2016)

Abstract

In this article, it presents an alternative rehabilitation system for upper extremity fine motor skills by using haptic devices implemented in a virtual reality interface. The proposed rehabilitation system develops 3D shapes and textures observed in virtual reality environments, interaction with environments generate specific rehabilitation exercises for conditions in patients to treat their conditions in the upper extremities; the system presents different rehabilitation environments focused on the use of virtual reality. The system is implemented through bilateral Unity3D software interaction with the Novint Falcon device further Oculus Rift and Leap motion is used for total immersion of the patient with the development of virtual reality. The patient performs a path, based in a rehabilitation entertainment brought about by the displacement and force feedback paths, which are based on physiotherapist’s exercises. Developed experimental results show the efficiency of the system, which generates the human interaction-machine, oriented to develop the human ability.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ramírez-Fernández, C., Morán, A.L., García-Canseco, E.: Haptic feedback in motor hand virtual therapy increases precision and generates less mental workload. In: 2015 9th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth), Istanbul, pp. 280–286 (2015)

    Google Scholar 

  2. Ramírez-Fernández, C., García-Canseco, E., Morán, A.L., Orihuela-Espina, F.: Design principles for hapto-virtual rehabilitation environments: effects on effectiveness of fine motor hand therapy. In: Fardoun, H.M., Penichet, V.M.R., Alghazzawi, D.M. (eds.) REHAB 2014. CCIS, vol. 515, pp. 270–284. Springer, Heidelberg (2015). doi:10.1007/978-3-662-48645-0_23

    Chapter  Google Scholar 

  3. Contu, S., Hughes, C., Masia, L.: Influence of visual information on bimanual haptic manipulation. In: 2015 IEEE International Conference on Rehabilitation Robotics (ICORR), Singapore, pp. 961–966 (2015)

    Google Scholar 

  4. Song, Z., Guo, S., Yazid, M.: Development of a potential system for upper limb rehabilitation training based on virtual reality. In: 2011 4th International Conference on Human System Interactions (HSI), Yokohama, pp. 352–356 (2011)

    Google Scholar 

  5. Ferre, M., Galiana, I., Wirz, R., Tuttle, N.: Haptic device for capturing and simulating hand manipulation rehabilitation. IEEE/ASME Trans. Mechatron. 16(5), 808–815 (2011)

    Article  Google Scholar 

  6. Zepeda-Ruelas, E., Gudiño-Lau, J., Durán-Fonseca, M., Charre-Ibarra, S., Alcalá-Rodríguez, J.: Control Háptico con Planificación de Trayectorias Aplicado a Novint Falcon. La Mecatrónica en México, vol. 3, no. 2, pp. 65–74, Mayo 2014

    Google Scholar 

  7. Haarth, R., Ejarque, G.E., Distefano, M.: INTERFAZ HÁPTICO APLICADA EN LA MANIPULACIÓN DE OBJETOS. Instituto de Automática y Electrónica Industrial, Facultad de Ingeniería Universidad Nacional de Cuyo (2010)

    Google Scholar 

  8. Hamza-Lup, F.G., Baird, W.H.: Feel the static and kinetic friction. In: Isokoski, P., Springare, J. (eds.) EuroHaptics 2012. LNCS, vol. 7282, pp. 181–192. Springer, Heidelberg (2012). doi:10.1007/978-3-642-31401-8_17

    Chapter  Google Scholar 

  9. Tavakoli, M., Patel, R.V., Moallem, M.: Haptic interaction in robot-assisted endoscopic surgery: a sensorized end-effector, 15 January 2005

    Google Scholar 

  10. Gupta, A., O’Malley, M.K.: Design of a haptic arm exoskeleton for training and rehabilitation. Trans. Mechatron IEEE/ASME 11(3), 280–289 (2006)

    Article  Google Scholar 

  11. Anani, A.B., Waldemark, J., Hagert, C.G., Nyström, Å.: Muscle strength measurement in the hand as a diagnostic method for nerve injury a pilot study. In: 14th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, Paris, France (1992)

    Google Scholar 

  12. Khor, K.X., Chin, P.J.H., Hisyam, A.R., Yeong, C.F., Narayanan, A.L.T., Su, E.L.M.: Development of CR2-haptic: a compact and portable rehabilitation robot for wrist and forearm training. In: IEEE Conference on Biomedical Engineering and Sciences (IECBES), Kuala Lumpur (2014)

    Google Scholar 

  13. Renon, P., Yang, C., Ma H., Cui R.: Haptic interaction between human and virtual iCub robot using Novint Falcon with CHAI3D and MATLAB. In: 32nd Chinese Control Conference (CCC), Xi’an, pp. 6045–6050 (2013)

    Google Scholar 

  14. D’Auria, D., Persia, F., Siciliano, B.: A low-cost haptic system for wrist rehabilitation. In: 2015 IEEE International Conference on Information Reuse and Integration (IRI), San Francisco, CA, pp. 491–495 (2015)

    Google Scholar 

  15. Wang, C., et al.: Development of a rehabilitation robot for hand and wrist rehabilitation training. In: 2015 IEEE International Conference on Information and Automation, Lijiang, pp. 106–111 (2015)

    Google Scholar 

  16. Spencer, S.J., Klein, J., Minakata, K., Le, V., Bobrow, J.E., Reinkensmeyer, D.J.: A low cost parallel robot and trajectory optimization method for wrist and forearm rehabilitation using the Wii. In: 2008 2nd IEEE RAS & EMBS International Conference on Biomedical Robotics and Biomechatronics, Scottsdale, AZ, pp. 869–874 (2008)

    Google Scholar 

  17. Barbosa, A.M., Rodrigues, L.A.O., dos Santos, S.S., Gonçalves, R.S.: Comparison of a mechanical and biomechanical system applied in the human wrist rehabilitation using a cable-based system. In: Robotics Symposium and Latin American Robotics Symposium (SBR-LARS), Brazilian, Fortaleza, pp. 120–124 (2012)

    Google Scholar 

  18. Adamovich, S., et al.: A virtual reality–based exercise system for hand rehabilitation post-stroke. Teleoperators Virtual Environ. 14, 161–174 (2005)

    Article  Google Scholar 

  19. Turolla, A., Dam, M., Ventura, L., Tonin, P., Agostini, M., Zucconi, C., Piron, L.: Virtual reality for the rehabilitation of the upper limb motor function after stroke: a prospective controlled trial. J. Neuroeng. Rehabil. 10(1), 1 (2013)

    Article  Google Scholar 

  20. Szmeková, L., Havelková, J., Katolicka, T.: The efficiency of cognitive therapy using virtual reality on upper limb mobility in stroke patients. In: 2015 International Conference on Virtual Rehabilitation Proceedings (ICVR), pp. 115–116. IEEE, June 2015

    Google Scholar 

  21. Sen, S., Xiang, Y., Ming, E., Xiang, K., Fai, Y., Khan, Q.: Enhancing effectiveness of virtual reality rehabilitation system: Durian Runtuh. In: 2015 10th Asian Control Conference (ASCC), pp. 1–6. IEEE, May 2015

    Google Scholar 

  22. Andaluz, V.H., Salazar, P.J., Silva M.S., Escudero, M., Bustamante C.D.: Rehabilitation of upper limb with force feedback. IEEE International Conference on Automatica ICA/ACCA 2016, vol. 22, Curicó, Chile, 19–21 de October 2016, in press

    Google Scholar 

Download references

Acknowledgment

The authors would like to thanks to the Consorcio Ecuatoriano para el Desarrollo de Internet Avanzado -CEDIA- for financing the project “Tele-Operación Bilateral Cooperativo de Múltiples Manipuladores Móviles – CEPRAIX-2015-05”, and the Universidad de las Fuerzas Armadas ESPE for the technical and human support to develop this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Víctor H. Andaluz .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Andaluz, V.H. et al. (2016). Virtual Reality Integration with Force Feedback in Upper Limb Rehabilitation. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2016. Lecture Notes in Computer Science(), vol 10073. Springer, Cham. https://doi.org/10.1007/978-3-319-50832-0_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50832-0_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50831-3

  • Online ISBN: 978-3-319-50832-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics