Skip to main content

Combinatorial Optimization for Human Body Tracking

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10073))

Included in the following conference series:

  • 1818 Accesses

Abstract

We present a method of improving the accuracy of a 3D human motion tracker. Beginning with confidence-weighted estimates for the positions of body parts, we solve the shortest path problem to identify combinations of positions that fit the rigid lengths of the body. We choose from multiple sets of these combinations by predicting current positions with kinematics. We also refine this choice by using the geometry of the optional positions. Our method was tested on a data set from an existing motion tracking system, resulting in an overall increase in the sensitivity and precision of tracking. Notably, the average sensitivity of the feet rose from 52.6% to 84.8%. When implemented on a 2.9 GHz processor, the system required an average of 3.5 milliseconds per video frame.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Czarnuch, S., Mihailidis, A.: Development and evaluation of a hand tracker using depth images captured from an overhead perspective. Disabil. Rehabil.: Assistive Technol. 11, 150–157 (2016)

    Google Scholar 

  2. Southwell, B.J., Fang, G.: Human object recognition using colour and depth information from an RGB-D Kinect sensor. Int. J. Adv. Robot. Syst. 10, 1–8 (2013)

    Google Scholar 

  3. Oikonomidis, I., Kyriazis, N., Argyros, A.: Efficient model-based 3D tracking of hand articulations using Kinect. In: 22nd British Machine Vision Conference, pp. 1–11 (2011)

    Google Scholar 

  4. Hernandez-Vela, A., Zlateva, N., Marinov, A., Reyes, M., Radeva, P., Dimov, D., Escalera, S.: Graph cuts optimization for multi-limb human segmentation in depth maps. In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, pp. 726–732. IEEE (2012)

    Google Scholar 

  5. Holt, B., Bowden, R.: Static pose estimation from depth images using random regression forests and Hough voting. In: Proceedings of the 7th International Conference on Computer Vision Theory and Applications, pp. 557–564 (2012)

    Google Scholar 

  6. Shotton, J., Sharp, T., Kipman, A., Fitzgibbon, A., Finocchio, M., Blake, A., Cook, M., Moore, R.: Real-time human pose recognition in parts from single depth images. Commun. ACM 56, 116 (2013)

    Article  Google Scholar 

  7. Keskin, C., Kiraç, F., Kara, Y.E., Akarun, L.: Real time hand pose estimation using depth sensors. In: IEEE International Conference on Computer Vision Workshops, pp. 1228–1234 (2011)

    Google Scholar 

  8. Demirdjian, D., Ko, T., Darrell, T.: Constraining human body tracking. In: Proceedings Ninth IEEE International Conference on Computer Vision, vol. 2, pp. 1071–1078. IEEE (2003)

    Google Scholar 

  9. Yamane, K., Nakamura, Y.: Dynamics filter - concept and implementation of online motion generator for human figures. IEEE Trans. Robot. Autom. 19, 421–432 (2003)

    Article  Google Scholar 

  10. Wang, Z., Feng, Y., Liu, S., Xiao, J., Yang, X., Zhang, J.J.: A 3D human motion refinement method based on sparse motion bases selection. In: Proceedings of the 29th International Conference on Computer Animation and Social Agents, New York, USA, pp. 53–60. ACM Press, New York (2016)

    Google Scholar 

  11. Lou, H., Chai, J.: Example-based human motion denoising. IEEE Trans. Vis. Comput. Graph. 16, 870–879 (2010)

    Article  Google Scholar 

  12. Holden, D., Saito, J., Komura, T., Joyce, T.: Learning motion manifolds with convolutional autoencoders. In: SIGGRAPH Asia Technical Briefs, New York, USA, pp. 1–4. ACM Press, New York (2015)

    Google Scholar 

  13. Feng, Y., Ji, M., Xiao, J., Yang, X., Zhang, J.J., Zhuang, Y., Li, X.: Mining spatial-temporal patterns and structural sparsity for human motion data denoising. IEEE Trans. Cybern. 45, 2693–2706 (2015)

    Article  Google Scholar 

  14. Czarnuch, S.M., Ploughman, M.: Toward inexpensive, autonomous, and unobtrusive exercise therapy support for persons with MS. In: ACTRIMS, New Orleans (2016)

    Google Scholar 

  15. Ren, X., Berg, A., Malik, J.: Recovering human body configurations using pairwise constraints between parts. In: Tenth IEEE International Conference on Computer Vision (ICCV 2005), vol. 1, pp. 824–831. IEEE (2005)

    Google Scholar 

  16. Cormen, T., Leiserson, C., Rivest, R., Stein, C.: Introduction to Algorithms, 2nd edn. The MIT Press, Cambridge (2001)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Czarnuch .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Hynes, A., Czarnuch, S. (2016). Combinatorial Optimization for Human Body Tracking. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2016. Lecture Notes in Computer Science(), vol 10073. Springer, Cham. https://doi.org/10.1007/978-3-319-50832-0_51

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50832-0_51

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50831-3

  • Online ISBN: 978-3-319-50832-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics