Skip to main content

Automatic Optic Disk Segmentation in Presence of Disk Blurring

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10072))

Included in the following conference series:

  • 4627 Accesses

Abstract

Fundus image analysis has emerged as a very useful tool to analyze the structure of retina for detection of different eye-related abnormalities. The detection of these abnormalities requires the segmentation of basic retinal structures including blood vessels and optic disk. The optic disk segmentation becomes a challenging task when the optic disk boundary is degraded due to some deviations including optic disk edema and papilledema. This paper focuses on the segmentation of optic disk in presence of disk blurring. The method proposed makes use of gradient extracted from line profiles that pass through optic disk margin. Initially the optic disk is enhanced using morphological operations and location of optic disk region is detected automatically using vessel density property. Finally, line profiles are extracted at different angles and their gradient is evaluated for the estimation of optic disk boundary. The proposed method has been applied on 28 images taken from Armed Forces Institute of Ophthalmology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. World Health Organization: A Global Brief on Hypertension. World Health Organization, Geneva (2013)

    Google Scholar 

  2. Hyman, B.N., Moser, M.: Hypertension update. Surv. Ophthalmol. 41, 79–89 (1996)

    Article  Google Scholar 

  3. Agurto, C., Joshi, V., Nemeth, S., Soliz, P., Barriga, S.: Detection of hypertensive retinopathy using vessel measurements and textural features. In: 36th Annual International Conference of the IEEE EMBS. IEEE Press, Chicago (2014)

    Google Scholar 

  4. Yin, X., Ng, B.W.-H., He, J., Zhang, Y., Abbott, D.: Accurate image analysis of the retina using Hessian matrix and binarisation of thresholded entropy with application of texture mapping. PLoS ONE 9(4), e95943 (2014)

    Article  Google Scholar 

  5. Irshad, S., Usman Akram, M., Ayub, S., Ayaz, A.: Retinal blood vessels differentiation for calculation of arterio-venous ratio. In: Kamel, M., Campilho, A. (eds.) ICIAR 2015. LNCS, vol. 9164, pp. 411–418. Springer, Heidelberg (2015). doi:10.1007/978-3-319-20801-5_45

    Chapter  Google Scholar 

  6. Irshad, S., Usman Akram, M.: Classification of retinal vessels into arteries and veins for detection of hypertensive retinopathy. In: IEEE 7th Cairo International Biomedical Engineering Conference (CIBEC). IEEE Press, Egypt (2014)

    Google Scholar 

  7. Auer, R.N., Sutherland, G.R.: Primary intracerebral hemorrhage: pathophysiology. Can. J. Neurol. Sci. 32, S3–S12 (2005)

    Google Scholar 

  8. Sahni, R., Weinberger, J.: Management of intracerebral hemorrhage. J. Vasc. Health Risk Manag. 3, 701 (2008)

    Google Scholar 

  9. Agarwal, S., Agarwal, A., Apple, D.J., Buratto, L., Alio, J.L.: Textbook of Ophthalmology, vol. 1, Jaypee Brothers Medical Publishers (2002)

    Google Scholar 

  10. Marin, D., Arias, M.E.G., Suero, A., Bravo, J.M.: Obtaining optic disc center and pixel region by automatic thresholding methods on morphologically processed fundus images. Comput. Meth. Programs Biomed. 118, 173–185 (2015)

    Article  Google Scholar 

  11. Abdullah, M., Fraz, M.M.: Application of grow cut algorithm for localization and extraction of optic disc in retinal images. In: 12th International Conference on High-Capacity Optical Networks and Emerging Technologies (HONET). IEEE Press (2015)

    Google Scholar 

  12. Mittapalli, P.S., Kande, G.B.: Segmentation of optic disk and optic cup from digital fundus images for the assessment of glaucoma. Biomed. Sig. Process. Control 24, 34–46 (2016)

    Article  Google Scholar 

  13. Wang, C., Kaba, D., Li, Y.: Level set segmentation of optic discs from retinal images. J. Med. Bioeng. 4, 213–220 (2015)

    Google Scholar 

  14. Omid, S., Ghassabi, Z., Shanbehzadeh, J., Ostadzadeh, S.S.: Optic disc detection in high-resolution retinal fundus images by region growing. In: 8th International Conference on BioMedical Engineering and Informatics (BMEI). IEEE Press (2015)

    Google Scholar 

  15. Xiong, L., Li, H.: An approach to locate optic disc in retinal images with pathological changes. Comput. Med. Imaging Graph. 47, 40–50 (2016)

    Article  Google Scholar 

  16. Jamal, I., Akram, M.U., Tariq, A.: Retinal image preprocessing: background and noise segmentation. TELKOMNIKA 10(3), 537–544 (2012)

    Article  Google Scholar 

  17. Akram, M.U., Jamal, I., Tariq, A.: Blood vessel enhancement and segmentation for screening of diabetic retinopathy. TELKOMNIKA Indonesian J. Electr. Eng. 10, 327–334 (2012)

    Google Scholar 

  18. Lee, T.S.: Image representation using 2D Gabor wavelets. IEEE Trans. Pattern Anal. Mach. Intell. 18(10), 959–971 (1996)

    Article  Google Scholar 

  19. Usman, A., Khitran, S.A., Usman Akram, M., Nadeem, Y.: A robust algorithm for optic disc segmentation from colored fundus images. In: Campilho, A., Kamel, M. (eds.) ICIAR 2014. LNCS, vol. 8815, pp. 303–310. Springer, Heidelberg (2014). doi:10.1007/978-3-319-11755-3_34

    Google Scholar 

  20. Gonzales, R.C., Woods, R.E.: Digital Image Processing, 3rd edn. Prentice-Hall, Upper Saddle River (2008)

    Google Scholar 

  21. Stojmenovic, M., Nayak, A.: Direct ellipse fitting and measuring based on shape boundaries. In: Mery, D., Rueda, L. (eds.) PSIVT 2007. LNCS, vol. 4872, pp. 221–235. Springer, Heidelberg (2007). doi:10.1007/978-3-540-77129-6_22

    Chapter  Google Scholar 

  22. Nikravesh, M., Zadeh, L.A.: Soft Computing for Information Processing and Analysis. Springer-Verlag, Heidelberg (2005)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samra Irshad .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Irshad, S., Yin, X., Li, L.Q., Salman, U. (2016). Automatic Optic Disk Segmentation in Presence of Disk Blurring. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2016. Lecture Notes in Computer Science(), vol 10072. Springer, Cham. https://doi.org/10.1007/978-3-319-50835-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50835-1_2

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50834-4

  • Online ISBN: 978-3-319-50835-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics