Abstract
Searching correspondences between 3D point Clouds is computationally expensive for two reasons: the complexity of geometric-based feature extraction operations and the large search space. To tackle this challenging problem, we propose a novel and efficient 3D point cloud matching algorithm. Our algorithm is inspired by PatchMatch [1], which is designed for correspondence search between 2D images. However, PatchMatch relies on the natural scanline order of 2D images to propagate good solutions across the images, whereas such an order does not exist for 3D point clouds. Hence, unlike PatchMatch which conducts search at different pixels sequentially under the scanline order, our algorithm searches the best correspondences for different 3D points in parallel using a variant of the Artificial Bee Colony (ABC) [2] algorithm and propagates good solutions found at one point to its k-nearest neighbors. In addition, noticed that correspondences found using geometric-based features extracted at individual points alone can be prone to noise, we add a novel smooth term to the objective function. Experiments on multiple datasets show that the new smooth term can effectively suppress matching noises and the ABC-based parallel search can significantly reduce the computational time compared to brute-force search.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.: Patchmatch: a randomized correspondence algorithm for structural image editing. TOG 28, 24 (2009)
Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (abc) algorithm. J. Global Optim. 39, 459–471 (2007)
Chen, J.-H., Zheng, K.C., Shapiro, L.G.: 3D point correspondence by minimum description length in feature space. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6313, pp. 621–634. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15558-1_45
Zhang, L., Snavely, N., Curless, B., Seitz, S.M.: Spacetime faces: high-resolution capture for modeling and animation. In: Deng, Z., Neumann, U. (eds.) Data-Driven 3D Facial Animation, pp. 248–276. Springer, New York (2008)
Blanz, V., Vetter, T.: Face recognition based on fitting a 3d morphable model. TPAMI 25, 1063–1074 (2003)
Stindel, E., Briard, J., Merloz, P., Plaweski, S., Dubrana, F., Lefevre, C., Troccaz, J.: Bone morphing: 3d morphological data for total knee arthroplasty. Comput. Aided Surg. 7, 156–168 (2002)
Rohr, K.: Towards model-based recognition of human movements in image sequences. CVGIP 59, 94–115 (1994)
Kakadiaris, I., Metaxas, D.: Model-based estimation of 3d human motion. TPAMI 22, 1453–1459 (2000)
Hu, W., Hu, M., Zhou, X., Tan, T., Lou, J., Maybank, S.: Principal axis-based correspondence between multiple cameras for people tracking. TPAMI 28, 663–671 (2006)
Turk, G., O’brien, J.F.: Shape transformation using variational implicit functions. In: ACM SIGGRAPH, 13. ACM (2005)
Rusu, R.B., Marton, Z.C., Blodow, N., Dolha, M., Beetz, M.: Towards 3d point cloud based object maps for household environments. Robot. Autonom. Syst. 56, 927–941 (2008)
Javed, O., Shah, M.: Tracking and object classification for automated surveillance. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2353, pp. 343–357. Springer, Heidelberg (2002). doi:10.1007/3-540-47979-1_23
Chui, H., Rangarajan, A.: A new point matching algorithm for non-rigid registration. CVIU 89, 114–141 (2003)
Feldmar, J., Malandain, G., Declerck, J., Ayache, N.: Extension of the icp algorithm to non-rigid intensity-based registration of 3d volumes. In: Proceedings of the Workshop on Mathematical Methods in Biomedical Image Analysis, pp. 84–93. IEEE (1996)
Chui, H., Rangarajan, A.: A new algorithm for non-rigid point matching. In: CVPR, vol. 2, pp. 44–51. IEEE (2000)
Van Kaick, O., Zhang, H., Hamarneh, G., Cohen-Or, D.: A survey on shape correspondence. In: Computer Graphics Forum, vol. 30, pp. 1681–1707. Wiley Online Library (2011)
Tam, G.K., Cheng, Z.Q., Lai, Y.K., Langbein, F.C., Liu, Y., Marshall, D., Martin, R.R., Sun, X.F., Rosin, P.L.: Registration of 3d point clouds and meshes: a survey from rigid to nonrigid. IEEE Trans. Vis. Comput. Graph. 19, 1199–1217 (2013)
Bendels, G.H., Schnabel, R., Klein, R.: Detail-preserving surface inpainting. In: VAST, pp. 41–48 (2005)
Sharf, A., Alexa, M., Cohen-Or, D.: Context-based surface completion. TOG 23, 878–887 (2004)
Huang, Q.X., Adams, B., Wicke, M., Guibas, L.J.: Non-rigid registration under isometric deformations. Comput. Graph. Forum 27, 1449–1457 (2008)
Alexandre, L.A.: 3d descriptors for object and category recognition: a comparative evaluation. In: IROS Workshop on Color-Depth Camera Fusion in Robotics, vol. 1(7) (2012)
Tangelder, J.W., Veltkamp, R.C.: A survey of content based 3d shape retrieval methods. Multimedia Tools Appl. 39, 441–471 (2008)
Tombari, F., Salti, S., Stefano, L.: Unique signatures of histograms for local surface description. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6313, pp. 356–369. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15558-1_26
Rusu, R.B., Blodow, N., Marton, Z.C., Beetz, M.: Aligning point cloud views using persistent feature histograms. In: IROS, pp. 3384–3391. IEEE (2008)
Rusu, R.B., Blodow, N., Beetz, M.: Fast point feature histograms (fpfh) for 3d registration. In: ICRA, pp. 3212–3217. IEEE (2009)
Fang, Y., Xie, J., Dai, G., Wang, M., Zhu, F., Xu, T., Wong, E.: 3d deep shape descriptor. In: CVPR, pp. 2319–2328 (2015)
Tombari, F., Salti, S., Di Stefano, L.: Unique shape context for 3d data description. In: Proceedings of the ACM Workshop on 3D Object Retrieval, pp. 57–62. ACM (2010)
Wei, L.Y., Levoy, M.: Fast texture synthesis using tree-structured vector quantization. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp. 479–488. ACM Press/Addison-Wesley Publishing Co. (2000)
Bentley, J.L.: Multidimensional binary search trees used for associative searching. Commun. ACM 18, 509–517 (1975)
Yianilos, P.N.: Data structures and algorithms for nearest neighbor search in general metric spaces. SODA 93, 311–321 (1993)
Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. Lond. Edinb. Dublin Philos. Mag. J. Sci. 2, 559–572 (1901)
Barnes, C., Shechtman, E., Goldman, D.B., Finkelstein, A.: The generalized patchmatch correspondence algorithm. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6313, pp. 29–43. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15558-1_3
Karaboga, D., Akay, B.: A comparative study of artificial bee colony algorithm. Appl. Math. Comput. 214, 108–132 (2009)
Karaboga, D., Basturk, B.: On the performance of artificial bee colony (abc) algorithm. Appl. Soft Comput. 8, 687–697 (2008)
Rusu, R.B., Cousins, S.: 3d is here: point cloud library (pcl). In: ICRA, pp. 1–4. IEEE (2011)
Cloudcompare: 3d point cloud and mesh processing software. http://www.danielgm.net/cc/. Accessed 22 Mar 2016
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Yi, Z., Li, Y., Gong, M. (2016). An Efficient Algorithm for Feature-Based 3D Point Cloud Correspondence Search. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2016. Lecture Notes in Computer Science(), vol 10072. Springer, Cham. https://doi.org/10.1007/978-3-319-50835-1_44
Download citation
DOI: https://doi.org/10.1007/978-3-319-50835-1_44
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-50834-4
Online ISBN: 978-3-319-50835-1
eBook Packages: Computer ScienceComputer Science (R0)