Skip to main content

An Efficient Algorithm for Feature-Based 3D Point Cloud Correspondence Search

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10072))

Included in the following conference series:

Abstract

Searching correspondences between 3D point Clouds is computationally expensive for two reasons: the complexity of geometric-based feature extraction operations and the large search space. To tackle this challenging problem, we propose a novel and efficient 3D point cloud matching algorithm. Our algorithm is inspired by PatchMatch [1], which is designed for correspondence search between 2D images. However, PatchMatch relies on the natural scanline order of 2D images to propagate good solutions across the images, whereas such an order does not exist for 3D point clouds. Hence, unlike PatchMatch which conducts search at different pixels sequentially under the scanline order, our algorithm searches the best correspondences for different 3D points in parallel using a variant of the Artificial Bee Colony (ABC) [2] algorithm and propagates good solutions found at one point to its k-nearest neighbors. In addition, noticed that correspondences found using geometric-based features extracted at individual points alone can be prone to noise, we add a novel smooth term to the objective function. Experiments on multiple datasets show that the new smooth term can effectively suppress matching noises and the ABC-based parallel search can significantly reduce the computational time compared to brute-force search.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Barnes, C., Shechtman, E., Finkelstein, A., Goldman, D.: Patchmatch: a randomized correspondence algorithm for structural image editing. TOG 28, 24 (2009)

    Article  Google Scholar 

  2. Karaboga, D., Basturk, B.: A powerful and efficient algorithm for numerical function optimization: artificial bee colony (abc) algorithm. J. Global Optim. 39, 459–471 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  3. Chen, J.-H., Zheng, K.C., Shapiro, L.G.: 3D point correspondence by minimum description length in feature space. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6313, pp. 621–634. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15558-1_45

    Chapter  Google Scholar 

  4. Zhang, L., Snavely, N., Curless, B., Seitz, S.M.: Spacetime faces: high-resolution capture for modeling and animation. In: Deng, Z., Neumann, U. (eds.) Data-Driven 3D Facial Animation, pp. 248–276. Springer, New York (2008)

    Google Scholar 

  5. Blanz, V., Vetter, T.: Face recognition based on fitting a 3d morphable model. TPAMI 25, 1063–1074 (2003)

    Article  Google Scholar 

  6. Stindel, E., Briard, J., Merloz, P., Plaweski, S., Dubrana, F., Lefevre, C., Troccaz, J.: Bone morphing: 3d morphological data for total knee arthroplasty. Comput. Aided Surg. 7, 156–168 (2002)

    Article  Google Scholar 

  7. Rohr, K.: Towards model-based recognition of human movements in image sequences. CVGIP 59, 94–115 (1994)

    Article  Google Scholar 

  8. Kakadiaris, I., Metaxas, D.: Model-based estimation of 3d human motion. TPAMI 22, 1453–1459 (2000)

    Article  Google Scholar 

  9. Hu, W., Hu, M., Zhou, X., Tan, T., Lou, J., Maybank, S.: Principal axis-based correspondence between multiple cameras for people tracking. TPAMI 28, 663–671 (2006)

    Article  Google Scholar 

  10. Turk, G., O’brien, J.F.: Shape transformation using variational implicit functions. In: ACM SIGGRAPH, 13. ACM (2005)

    Google Scholar 

  11. Rusu, R.B., Marton, Z.C., Blodow, N., Dolha, M., Beetz, M.: Towards 3d point cloud based object maps for household environments. Robot. Autonom. Syst. 56, 927–941 (2008)

    Article  Google Scholar 

  12. Javed, O., Shah, M.: Tracking and object classification for automated surveillance. In: Heyden, A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002. LNCS, vol. 2353, pp. 343–357. Springer, Heidelberg (2002). doi:10.1007/3-540-47979-1_23

    Chapter  Google Scholar 

  13. Chui, H., Rangarajan, A.: A new point matching algorithm for non-rigid registration. CVIU 89, 114–141 (2003)

    MATH  Google Scholar 

  14. Feldmar, J., Malandain, G., Declerck, J., Ayache, N.: Extension of the icp algorithm to non-rigid intensity-based registration of 3d volumes. In: Proceedings of the Workshop on Mathematical Methods in Biomedical Image Analysis, pp. 84–93. IEEE (1996)

    Google Scholar 

  15. Chui, H., Rangarajan, A.: A new algorithm for non-rigid point matching. In: CVPR, vol. 2, pp. 44–51. IEEE (2000)

    Google Scholar 

  16. Van Kaick, O., Zhang, H., Hamarneh, G., Cohen-Or, D.: A survey on shape correspondence. In: Computer Graphics Forum, vol. 30, pp. 1681–1707. Wiley Online Library (2011)

    Google Scholar 

  17. Tam, G.K., Cheng, Z.Q., Lai, Y.K., Langbein, F.C., Liu, Y., Marshall, D., Martin, R.R., Sun, X.F., Rosin, P.L.: Registration of 3d point clouds and meshes: a survey from rigid to nonrigid. IEEE Trans. Vis. Comput. Graph. 19, 1199–1217 (2013)

    Article  Google Scholar 

  18. Bendels, G.H., Schnabel, R., Klein, R.: Detail-preserving surface inpainting. In: VAST, pp. 41–48 (2005)

    Google Scholar 

  19. Sharf, A., Alexa, M., Cohen-Or, D.: Context-based surface completion. TOG 23, 878–887 (2004)

    Article  Google Scholar 

  20. Huang, Q.X., Adams, B., Wicke, M., Guibas, L.J.: Non-rigid registration under isometric deformations. Comput. Graph. Forum 27, 1449–1457 (2008)

    Article  Google Scholar 

  21. Alexandre, L.A.: 3d descriptors for object and category recognition: a comparative evaluation. In: IROS Workshop on Color-Depth Camera Fusion in Robotics, vol. 1(7) (2012)

    Google Scholar 

  22. Tangelder, J.W., Veltkamp, R.C.: A survey of content based 3d shape retrieval methods. Multimedia Tools Appl. 39, 441–471 (2008)

    Article  Google Scholar 

  23. Tombari, F., Salti, S., Stefano, L.: Unique signatures of histograms for local surface description. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6313, pp. 356–369. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15558-1_26

    Chapter  Google Scholar 

  24. Rusu, R.B., Blodow, N., Marton, Z.C., Beetz, M.: Aligning point cloud views using persistent feature histograms. In: IROS, pp. 3384–3391. IEEE (2008)

    Google Scholar 

  25. Rusu, R.B., Blodow, N., Beetz, M.: Fast point feature histograms (fpfh) for 3d registration. In: ICRA, pp. 3212–3217. IEEE (2009)

    Google Scholar 

  26. Fang, Y., Xie, J., Dai, G., Wang, M., Zhu, F., Xu, T., Wong, E.: 3d deep shape descriptor. In: CVPR, pp. 2319–2328 (2015)

    Google Scholar 

  27. Tombari, F., Salti, S., Di Stefano, L.: Unique shape context for 3d data description. In: Proceedings of the ACM Workshop on 3D Object Retrieval, pp. 57–62. ACM (2010)

    Google Scholar 

  28. Wei, L.Y., Levoy, M.: Fast texture synthesis using tree-structured vector quantization. In: Proceedings of the Conference on Computer Graphics and Interactive Techniques, pp. 479–488. ACM Press/Addison-Wesley Publishing Co. (2000)

    Google Scholar 

  29. Bentley, J.L.: Multidimensional binary search trees used for associative searching. Commun. ACM 18, 509–517 (1975)

    Article  MATH  Google Scholar 

  30. Yianilos, P.N.: Data structures and algorithms for nearest neighbor search in general metric spaces. SODA 93, 311–321 (1993)

    MathSciNet  MATH  Google Scholar 

  31. Pearson, K.: Liii. on lines and planes of closest fit to systems of points in space. Lond. Edinb. Dublin Philos. Mag. J. Sci. 2, 559–572 (1901)

    Article  MATH  Google Scholar 

  32. Barnes, C., Shechtman, E., Goldman, D.B., Finkelstein, A.: The generalized patchmatch correspondence algorithm. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010. LNCS, vol. 6313, pp. 29–43. Springer, Heidelberg (2010). doi:10.1007/978-3-642-15558-1_3

    Chapter  Google Scholar 

  33. Karaboga, D., Akay, B.: A comparative study of artificial bee colony algorithm. Appl. Math. Comput. 214, 108–132 (2009)

    MathSciNet  MATH  Google Scholar 

  34. Karaboga, D., Basturk, B.: On the performance of artificial bee colony (abc) algorithm. Appl. Soft Comput. 8, 687–697 (2008)

    Article  Google Scholar 

  35. Rusu, R.B., Cousins, S.: 3d is here: point cloud library (pcl). In: ICRA, pp. 1–4. IEEE (2011)

    Google Scholar 

  36. Cloudcompare: 3d point cloud and mesh processing software. http://www.danielgm.net/cc/. Accessed 22 Mar 2016

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zili Yi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Yi, Z., Li, Y., Gong, M. (2016). An Efficient Algorithm for Feature-Based 3D Point Cloud Correspondence Search. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2016. Lecture Notes in Computer Science(), vol 10072. Springer, Cham. https://doi.org/10.1007/978-3-319-50835-1_44

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50835-1_44

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50834-4

  • Online ISBN: 978-3-319-50835-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics