Skip to main content

SAHF: Unsupervised Texture-Based Multiscale with Multicolor Method for Retinal Vessel Delineation

  • Conference paper
  • First Online:
Advances in Visual Computing (ISVC 2016)

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10072))

Included in the following conference series:

Abstract

Automatic vessel delineation has been challenging due to complexities during the acquisition of retinal images. Although, great progress have been made in this field, it remains the subject of on-going research as there is need to further improve on the delineation of more large and thinner retinal vessels as well as the computational speed. Texture and color are promising, as they are very good features applied for object detection in computer vision. This paper presents an investigatory study on sum average Haralick feature (SAHF) using multi-scale approach over two different color spaces, CIElab and RGB, for the delineation of retinal vessels. Experimental results show that the method presented in this paper is robust for the delineation of retinal vessels having achieved fast computational speed with the maximum average accuracy of 95.67% and maximum average sensitivity of 81.12% on DRIVE database. When compared with the previous methods, the method investigated in this paper achieves higher average accuracy and sensitivity rates on DRIVE.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Research section, digital retinal image for vessel extraction (drive) database. Utrecht, The Netherlands, University Medical Center Utrecht, Image Sciences Institute. http://www.isi.uu.nl/Research/Databases/DRIVE

  2. Abràmoff, M.D., Garvin, M.K., Sonka, M.: Retinal imaging, image analysis. IEEE Rev. Biomed. Eng. 3, 169–208 (2010)

    Article  Google Scholar 

  3. Davitt, B.V., Wallace, D.K.: Plus disease. Surv. Ophthalmol. 54(6), 663–670 (2009)

    Article  Google Scholar 

  4. Haralick, R.M., Shanmugam, K., Dinstein, I.H.: Textural features for image classification. IEEE Trans. Systems Man Cybern. 3(6), 610–621 (1973)

    Article  Google Scholar 

  5. Hoover, A., Kouznetsova, V., Goldbaum, M.: Locating blood vessels in retinal images by piecewise threshold probing of a matched filter response. IEEE Trans. Med. Imaging 19(3), 203–210 (2000)

    Article  Google Scholar 

  6. Jiang, X., Mojon, D.: Adaptive local thresholding by verification-based multithreshold probing with application to vessel detection in retinal images. IEEE Trans. Pattern Anal. Mach. Intell. 25(1), 131–137 (2003)

    Article  Google Scholar 

  7. Li, B., Li, H.K.: Automated analysis of diabetic retinopathy images: principles, recent developments, and emerging trends. Curr. Diab. Rep. 13(4), 453–459 (2013)

    Article  Google Scholar 

  8. Li, Q., You, J., Zhang, D.: Vessel segmentation and width estimation in retinal images using multiscale production of matched filter responses. Expert Syst. Appl. 39(9), 7600–7610 (2012)

    Article  Google Scholar 

  9. Mäenpää, T., Pietikäinen, M.: Classification with color and texture: jointly or separately? Pattern Recogn. 37(8), 1629–1640 (2004)

    Article  Google Scholar 

  10. Mapayi, T., Tapamo, J.-R., Viriri, S., Adio, A.: Automatic retinal vessel detection and tortuosity measurement. Image Anal. Stereology 35(2), 117–135 (2016)

    Article  MathSciNet  Google Scholar 

  11. Mapayi, T., Viriri, S., Tapamo, J.-R.: Comparative study of retinal vessel segmentation based on global thresholding techniques. Comput. Math. Methods Med. 2015 (2015)

    Google Scholar 

  12. Marín, D., Aquino, A., Gegúndez-Arias, M.E., Bravo, J.M.: A new supervised method for blood vessel segmentation in retinal images by using gray-level, moment invariants-based features. IEEE Trans. Med. Imaging 30(1), 146–158 (2011)

    Article  Google Scholar 

  13. Martínez-Pérez, M.E., Hughes, A.D., Stanton, A.V., Thom, S.A., Bharath, A.A., Parker, K.H.: Retinal blood vessel segmentation by means of scale-space analysis and region growing. In: Taylor, C., Colchester, A. (eds.) MICCAI 1999. LNCS, vol. 1679, pp. 90–97. Springer, Heidelberg (1999). doi:10.1007/10704282_10

    Chapter  Google Scholar 

  14. Mendonca, A.M., Campilho, A.: Segmentation of retinal blood vessels by combining the detection of centerlines and morphological reconstruction. IEEE Trans. Med. Imaging 25(9), 1200–1213 (2006)

    Article  Google Scholar 

  15. Niemeijer, M., Staal, J., van Ginneken, B., Loog, M., Abramoff, M.D.: Comparative study of retinal vessel segmentation methods on a new publicly available database. In: Medical Imaging 2004, pp. 648–656. International Society for Optics and Photonics (2004)

    Google Scholar 

  16. Ohta, Y.-I., Kanade, T., Sakai, T.: Color information for region segmentation. Comput. Graph. Image Process. 13(3), 222–241 (1980)

    Article  Google Scholar 

  17. Palm, C.: Color texture classification by integrative co-occurrence matrices. Pattern Recogn. 37(5), 965–976 (2004)

    Article  Google Scholar 

  18. Patasius, M., Marozas, V., Jegelevicius, D., Lukoševičius, A.: Ranking of color space components for detection of blood vessels in eye fundus images. In: Sloten, J.V., Verdonck, P., Nyssen, M., Haueisen, J. (eds.) 4th European Conference of the International Federation for Medical and Biological Engineering, pp. 464–467. Springer, Heidelberg (2009)

    Chapter  Google Scholar 

  19. Pratt, W.: Spatial transform coding of color images. IEEE Trans. Commun. Technol. 19(6), 980–992 (1971)

    Article  Google Scholar 

  20. Ricci, E., Perfetti, R.: Retinal blood vessel segmentation using line operators and support vector classification. IEEE Trans. Med. Imaging 26(10), 1357–1365 (2007)

    Article  Google Scholar 

  21. Saffarzadeh, V.M., Osareh, A., Shadgar, B.: Vessel segmentation in retinal images using multi-scale line operator, K-means clustering. J. Med. Sig. Sens. 4(2), 122 (2014)

    Google Scholar 

  22. Soares, J.V., Leandro, J.J., Cesar, R.M., Jelinek, H.F., Cree, M.J.: Retinal vessel segmentation using the 2-D gabor wavelet, supervised classification. IEEE Trans. Med. Imaging 25(9), 1214–1222 (2006)

    Article  Google Scholar 

  23. Staal, J., Abràmoff, M.D., Niemeijer, M., Viergever, M.A., van Ginneken, B.: Ridge-based vessel segmentation in color images of the retina. IEEE Trans. Med. Imaging 23(4), 501–509 (2004)

    Article  Google Scholar 

  24. Tobin, K.W., Edward Chaum, V., Govindasamy, P., Karnowski, T.P.: Detection of anatomic structures in human retinal imagery. IEEE Trans. Med. Imaging 26(12), 1729–1739 (2007)

    Article  Google Scholar 

  25. Van de Wouwer, G., Scheunders, P., Livens, S., Van Dyck, D.: Wavelet correlation signatures for color texture characterization. Pattern Recogn. 32(3), 443–451 (1999)

    Article  Google Scholar 

  26. Vlachos, M., Dermatas, E.: Multi-scale retinal vessel segmentation using line tracking. Comput. Med. Imaging Graph. 34(3), 213–227 (2010)

    Article  Google Scholar 

  27. Wang, Y., Ji, G., Lin, P., Trucco, E., et al.: Retinal vessel segmentation using multiwavelet kernels and multiscale hierarchical decomposition. Pattern Recogn. 46(8), 2117–2133 (2013)

    Article  Google Scholar 

  28. Yang, Y., Huang, S.: Image segmentation by fuzzy C-means clustering algorithm with a novel penalty term. Comput. Inf. 26(1), 17–31 (2012)

    MATH  Google Scholar 

  29. Yin, Y., Adel, M., Bourennane, S.: Automatic segmentation and measurement of vasculature in retinal fundus images using probabilistic formulation. Comput. Math. Methods Med. 2013 (2013)

    Google Scholar 

Download references

Acknowledgement

We thank DRIVE [1] for making the retinal images dataset publicly available.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jules-Raymond Tapamo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Mapayi, T., Tapamo, JR. (2016). SAHF: Unsupervised Texture-Based Multiscale with Multicolor Method for Retinal Vessel Delineation. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2016. Lecture Notes in Computer Science(), vol 10072. Springer, Cham. https://doi.org/10.1007/978-3-319-50835-1_57

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50835-1_57

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50834-4

  • Online ISBN: 978-3-319-50835-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics