Abstract
Optical flow ground truth generated by computer graphics has many advantages. For example, we can systematically vary scene parameters to understand algorithm sensitivities. But is synthetic ground truth realistic enough? Appropriate material models have been established as one of the major challenges for the creation of synthetic datasets: previous research has shown that highly sophisticated reflectance field acquisition methods yield results, which various optical flow methods cannot distinguish from real scenes. However, such methods are costly both in acquisition and rendering time and thus infeasible for large datasets. In this paper we find the simplest reflectance models (RM) for different groups of materials which still provide sufficient accuracy for optical flow performance analysis. It turns out that a spatially varying Phong RM is sufficient for simple materials. Normal estimation combined with Anisotropic RM can handle even very complex materials.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The kitti vision benchmark suite. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2012)
Kondermann, D., Nair, R., Meister, S., Mischler, W., Güssefeld, B., Honauer, K., Hofmann, S., Brenner, C., Jähne, B.: Stereo ground truth with error bars. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9007, pp. 595–610. Springer, Heidelberg (2015). doi:10.1007/978-3-319-16814-2_39
Butler, D.J., Wulff, J., Stanley, G.B., Black, M.J.: A naturalistic open source movie for optical flow evaluation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 611–625. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33783-3_44
Mac Aodha, O., Humayun, A., Pollefeys, M., Brostow, G.J.: Learning a confidence measure for optical flow. IEEE Trans. Pattern Anal. Mach. Intell. 35(5), 1107–1120 (2012)
Vaudrey, T., Rabe, C., Klette, R., Milburn, J.: Differences between stereo and motion behaviour on synthetic and real-world stereo sequences. In: Proceedings of the 23rd International Conference on Image and Vision Computing New Zealand (2008)
Meister, S., Kondermann, D.: Real versus realistically rendered scenes for optical flow evaluation. In: ITG Conference on Electronic Media Technology (2011)
Schwartz, C., Sarlette, R., Weinmann, M., Klein, R.: Dome II: a parallelized BTF acquisition system. In: Eurographics Workshop on Material Appearance Modeling: Issues and Acquisition, pp. 25–31. Eurographics Association (2013)
Güssefeld, B., Kondermann, D., Schwartz, C., Klein, R.: Are reflectance field renderings appropriate for optical flow evaluation? In: IEEE International Conference on Image Processing (ICIP), Paris, France. IEEE (2014)
Heeger, D.: Model for the extraction of image flow. J. Opt. Soc, Am. 4, 1455–1471 (1987)
Baker, S., Scharstein, D., Lewis, J.P., Roth, S., Black, M.J., Szeliski, R.: A database and evaluation methodology for optical flow. Int. J. Comput. Vis. 92, 1–31 (2011)
Martull, S., Peris, M., Fukui, K.: Realistic CG stereo image dataset with ground truth disparity maps. In: 2012 21st International Conference on Proceedings of The 3rd International Workshop on Benchmark Test Schemes for AR/MR Geometric Registration and Tracking Method (TrakMark2012). Pattern Recognition (ICPR) (2012)
Haltakov, V., Unger, C., Ilic, S.: Framework for generation of synthetic ground truth data for driver assistance applications. In: Weickert, J., Hein, M., Schiele, B. (eds.) GCPR 2013. LNCS, vol. 8142, pp. 323–332. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40602-7_35
Haeusler, R., Kondermann, D.: Synthesizing real world stereo challenges. In: Weickert, J., Hein, M., Schiele, B. (eds.) GCPR 2013. LNCS, vol. 8142, pp. 164–173. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40602-7_17
Nicodemus, F.E.: Directional reflectance and emissivity of an opaque surface. Appl. Opt. 4, 767–775 (1965)
Matusik, W., Pfister, H., Brand, M., McMillan, L.: A data-driven reflectance model. ACM Trans. Graph. 22, 759–769 (2003)
Dana, K.J., van Ginneken, B., Nayar, S.K., Koenderink, J.J.: Reflectance and texture of real-world surfaces. ACM Trans. Graph. 18, 1–34 (1999)
Weinmann, M., Gall, J., Klein, R.: Material classification based on training data synthesized using a BTF database. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 156–171. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10578-9_11
Phong, B.T.: Illumination for computer generated pictures. Commun. ACM 18, 311–317 (1975)
Ward, G.J.: Measuring and modeling anisotropic reflection. SIGGRAPH Comput. Graph. 26, 265–272 (1992)
Cook, R.L., Torrance, K.E.: A reflectance model for computer graphics. ACM Trans. Graph. 1, 7–24 (1982)
Ngan, A., Durand, F., Matusik, W.: Experimental analysis of BRDF models. In: Proceedings of the Eurographics Symposium on Rendering, pp. 117–226. Eurographics Association (2005)
Lafortune, E.P., Willems, Y.D.: Using the modified phong reflectance model for physically based rendering. Technical report (1994)
Geisler-Moroder, D., Dür, A.: A new ward BRDF model with bounded albedo. Comput. Graph. Forum 29, 1391–1398 (2010)
Ashikhmin, M., Shirley, P.: An anisotropic phong BRDF model. J. Graph. Tools 5, 25–32 (2000)
Prados, E., Faugeras, O.: Shape from shading. In: Paragios, N., Chen, Y., Faugeras, O. (eds.) Handbook of Mathematical Models in Computer Vision, pp. 375–388. Springer, New York (2006)
Hart, J.C.: Perlin noise pixel shaders. In: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Workshop on Graphics Hardware, HWWS 2001, pp. 87–94. ACM, New York (2001)
Xu, L., Jia, J., Matsushita, Y.: Motion detail preserving optical flow estimation. IEEE Trans. Pattern Anal. Mach. Intell. 34, 1744–1757 (2012)
Horn, D.K.P., Schunck, B.G.: Determining optical flow. Artif. Intell. 17, 185–203 (1981)
Gottfried, J., Kondermann, D.: Charon suite software framework. Image Processing Online (IPOL) (2012)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2016 Springer International Publishing AG
About this paper
Cite this paper
Güssefeld, B., Honauer, K., Kondermann, D. (2016). Creating Feasible Reflectance Data for Synthetic Optical Flow Datasets. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2016. Lecture Notes in Computer Science(), vol 10072. Springer, Cham. https://doi.org/10.1007/978-3-319-50835-1_8
Download citation
DOI: https://doi.org/10.1007/978-3-319-50835-1_8
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-50834-4
Online ISBN: 978-3-319-50835-1
eBook Packages: Computer ScienceComputer Science (R0)