Skip to main content

Creating Feasible Reflectance Data for Synthetic Optical Flow Datasets

  • Conference paper
  • First Online:

Part of the book series: Lecture Notes in Computer Science ((LNIP,volume 10072))

Abstract

Optical flow ground truth generated by computer graphics has many advantages. For example, we can systematically vary scene parameters to understand algorithm sensitivities. But is synthetic ground truth realistic enough? Appropriate material models have been established as one of the major challenges for the creation of synthetic datasets: previous research has shown that highly sophisticated reflectance field acquisition methods yield results, which various optical flow methods cannot distinguish from real scenes. However, such methods are costly both in acquisition and rendering time and thus infeasible for large datasets. In this paper we find the simplest reflectance models (RM) for different groups of materials which still provide sufficient accuracy for optical flow performance analysis. It turns out that a spatially varying Phong RM is sufficient for simple materials. Normal estimation combined with Anisotropic RM can handle even very complex materials.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Geiger, A., Lenz, P., Urtasun, R.: Are we ready for autonomous driving? The kitti vision benchmark suite. In: Conference on Computer Vision and Pattern Recognition (CVPR) (2012)

    Google Scholar 

  2. Kondermann, D., Nair, R., Meister, S., Mischler, W., Güssefeld, B., Honauer, K., Hofmann, S., Brenner, C., Jähne, B.: Stereo ground truth with error bars. In: Cremers, D., Reid, I., Saito, H., Yang, M.-H. (eds.) ACCV 2014. LNCS, vol. 9007, pp. 595–610. Springer, Heidelberg (2015). doi:10.1007/978-3-319-16814-2_39

    Google Scholar 

  3. Butler, D.J., Wulff, J., Stanley, G.B., Black, M.J.: A naturalistic open source movie for optical flow evaluation. In: Fitzgibbon, A., Lazebnik, S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012. LNCS, vol. 7577, pp. 611–625. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33783-3_44

    Chapter  Google Scholar 

  4. Mac Aodha, O., Humayun, A., Pollefeys, M., Brostow, G.J.: Learning a confidence measure for optical flow. IEEE Trans. Pattern Anal. Mach. Intell. 35(5), 1107–1120 (2012)

    Article  Google Scholar 

  5. Vaudrey, T., Rabe, C., Klette, R., Milburn, J.: Differences between stereo and motion behaviour on synthetic and real-world stereo sequences. In: Proceedings of the 23rd International Conference on Image and Vision Computing New Zealand (2008)

    Google Scholar 

  6. Meister, S., Kondermann, D.: Real versus realistically rendered scenes for optical flow evaluation. In: ITG Conference on Electronic Media Technology (2011)

    Google Scholar 

  7. Schwartz, C., Sarlette, R., Weinmann, M., Klein, R.: Dome II: a parallelized BTF acquisition system. In: Eurographics Workshop on Material Appearance Modeling: Issues and Acquisition, pp. 25–31. Eurographics Association (2013)

    Google Scholar 

  8. Güssefeld, B., Kondermann, D., Schwartz, C., Klein, R.: Are reflectance field renderings appropriate for optical flow evaluation? In: IEEE International Conference on Image Processing (ICIP), Paris, France. IEEE (2014)

    Google Scholar 

  9. Heeger, D.: Model for the extraction of image flow. J. Opt. Soc, Am. 4, 1455–1471 (1987)

    Article  Google Scholar 

  10. Baker, S., Scharstein, D., Lewis, J.P., Roth, S., Black, M.J., Szeliski, R.: A database and evaluation methodology for optical flow. Int. J. Comput. Vis. 92, 1–31 (2011)

    Article  Google Scholar 

  11. Martull, S., Peris, M., Fukui, K.: Realistic CG stereo image dataset with ground truth disparity maps. In: 2012 21st International Conference on Proceedings of The 3rd International Workshop on Benchmark Test Schemes for AR/MR Geometric Registration and Tracking Method (TrakMark2012). Pattern Recognition (ICPR) (2012)

    Google Scholar 

  12. Haltakov, V., Unger, C., Ilic, S.: Framework for generation of synthetic ground truth data for driver assistance applications. In: Weickert, J., Hein, M., Schiele, B. (eds.) GCPR 2013. LNCS, vol. 8142, pp. 323–332. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40602-7_35

    Chapter  Google Scholar 

  13. Haeusler, R., Kondermann, D.: Synthesizing real world stereo challenges. In: Weickert, J., Hein, M., Schiele, B. (eds.) GCPR 2013. LNCS, vol. 8142, pp. 164–173. Springer, Heidelberg (2013). doi:10.1007/978-3-642-40602-7_17

    Chapter  Google Scholar 

  14. Nicodemus, F.E.: Directional reflectance and emissivity of an opaque surface. Appl. Opt. 4, 767–775 (1965)

    Article  Google Scholar 

  15. Matusik, W., Pfister, H., Brand, M., McMillan, L.: A data-driven reflectance model. ACM Trans. Graph. 22, 759–769 (2003)

    Article  Google Scholar 

  16. Dana, K.J., van Ginneken, B., Nayar, S.K., Koenderink, J.J.: Reflectance and texture of real-world surfaces. ACM Trans. Graph. 18, 1–34 (1999)

    Article  Google Scholar 

  17. Weinmann, M., Gall, J., Klein, R.: Material classification based on training data synthesized using a BTF database. In: Fleet, D., Pajdla, T., Schiele, B., Tuytelaars, T. (eds.) ECCV 2014. LNCS, vol. 8691, pp. 156–171. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10578-9_11

    Google Scholar 

  18. Phong, B.T.: Illumination for computer generated pictures. Commun. ACM 18, 311–317 (1975)

    Article  Google Scholar 

  19. Ward, G.J.: Measuring and modeling anisotropic reflection. SIGGRAPH Comput. Graph. 26, 265–272 (1992)

    Article  Google Scholar 

  20. Cook, R.L., Torrance, K.E.: A reflectance model for computer graphics. ACM Trans. Graph. 1, 7–24 (1982)

    Article  Google Scholar 

  21. Ngan, A., Durand, F., Matusik, W.: Experimental analysis of BRDF models. In: Proceedings of the Eurographics Symposium on Rendering, pp. 117–226. Eurographics Association (2005)

    Google Scholar 

  22. Lafortune, E.P., Willems, Y.D.: Using the modified phong reflectance model for physically based rendering. Technical report (1994)

    Google Scholar 

  23. Geisler-Moroder, D., Dür, A.: A new ward BRDF model with bounded albedo. Comput. Graph. Forum 29, 1391–1398 (2010)

    Article  Google Scholar 

  24. Ashikhmin, M., Shirley, P.: An anisotropic phong BRDF model. J. Graph. Tools 5, 25–32 (2000)

    Article  Google Scholar 

  25. Prados, E., Faugeras, O.: Shape from shading. In: Paragios, N., Chen, Y., Faugeras, O. (eds.) Handbook of Mathematical Models in Computer Vision, pp. 375–388. Springer, New York (2006)

    Google Scholar 

  26. Hart, J.C.: Perlin noise pixel shaders. In: Proceedings of the ACM SIGGRAPH/EUROGRAPHICS Workshop on Graphics Hardware, HWWS 2001, pp. 87–94. ACM, New York (2001)

    Google Scholar 

  27. Xu, L., Jia, J., Matsushita, Y.: Motion detail preserving optical flow estimation. IEEE Trans. Pattern Anal. Mach. Intell. 34, 1744–1757 (2012)

    Article  Google Scholar 

  28. Horn, D.K.P., Schunck, B.G.: Determining optical flow. Artif. Intell. 17, 185–203 (1981)

    Article  Google Scholar 

  29. Gottfried, J., Kondermann, D.: Charon suite software framework. Image Processing Online (IPOL) (2012)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Burkhard Güssefeld .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Güssefeld, B., Honauer, K., Kondermann, D. (2016). Creating Feasible Reflectance Data for Synthetic Optical Flow Datasets. In: Bebis, G., et al. Advances in Visual Computing. ISVC 2016. Lecture Notes in Computer Science(), vol 10072. Springer, Cham. https://doi.org/10.1007/978-3-319-50835-1_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50835-1_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50834-4

  • Online ISBN: 978-3-319-50835-1

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics