Skip to main content

Towards Large-Scale Fiber Orientation Models of the Brain – Automation and Parallelization of a Seeded Region Growing Segmentation of High-Resolution Brain Section Images

  • Conference paper
  • First Online:
Brain-Inspired Computing (BrainComp 2015)

Part of the book series: Lecture Notes in Computer Science ((LNTCS,volume 10087))

Included in the following conference series:

Abstract

To understand the microscopical organization of the human brain including cellular and fiber architectures, it is a necessary prerequisite to build virtual models of the brain on a sound biological basis. 3D Polarized Light Imaging (3D-PLI) provides a window to analyze the fiber architecture and the fibers’ intricate inter-connections at microscopic resolutions. Considering the complexity and the pure size of the human brain with its nearly 86 billion nerve cells, 3D-PLI is challenging with respect to data handling and analysis in the TeraByte to PetaByte ranges, and inevitably requires supercomputing facilities. Parallelization and automation of image processing steps open up new perspectives to speed up the generation of new high resolution models of the human brain to provide groundbreaking insights into the brain’s three-dimensional micro architecture. Here, we will describe the implementation and the performance of a parallelized semi-automated seeded region growing algorithm used to classify tissue and background components in up to one million 3D-PLI images acquired from an entire human brain. This algorithm represents an important element of a complex UNICORE-based analysis workflow ultimately aiming at the extraction of spatial fiber orientations from 3D-PLI measurements.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Axer, M., Amunts, K., Gräßel, D., Palm, C., Dammers, J., Axer, H., Pietrzyk, U., Zilles, K.: A novel approach to the human connectome: ultra-high resolution mapping of fiber tracts in the brain. NeuroImage 54, 1091–1101 (2011)

    Article  Google Scholar 

  2. Adams, R., Bischof, L.: Seeded region growing. IEEE Trans. Pattern Anal. Mach. Intell. 16(6), 641–647 (1994)

    Article  Google Scholar 

  3. Amunts, K., Bücker, O., Axer, M.: Towards a multiscale, high-resolution model of the human brain. In: Grandinetti, L., Lippert, T., Petkov, N. (eds.) BrainComp 2013. LNCS, vol. 8603, pp. 3–14. Springer, Heidelberg (2014). doi:10.1007/978-3-319-12084-3_1

    Google Scholar 

  4. Axer, M., Gräßel, D., Kleiner, M., Dammers, J., Dickscheid, T., Reckfort, J., Hütz, T., Eiben, B., Pietrzyk, U., Zilles, K., Amunts, K.: High-resolution fiber tract reconstruction in the human brain by means of three-dimensional polarized light imaging (3D-PLI). Front. Neuroinformatics 5, 34 (2011)

    Google Scholar 

  5. Bader, D.A., Jájá, J., Harwood, D., Davis, L.S.: Parallel algorithms for image enhancement and segmentation by region growing, with an experimental study. J. Supercomputing 10(2), 141–168 (1996)

    Article  Google Scholar 

  6. Grady, L., Schiwietz, T., Aharon, S., Westermann, R.: Random walks for interactive organ segmentation in two and three dimensions: implementation and validation. In: Duncan, J.S., Gerig, G. (eds.) MICCAI 2005. LNCS, vol. 3750, pp. 773–780. Springer, Heidelberg (2005). doi:10.1007/11566489_95

    Chapter  Google Scholar 

  7. Happ, P.N., Ferreira, R.S., Bentes, C., Costa, G., Feitosa, R.Q.: Multiresolution segmentation: a parallel approach for high resolution image segmentation in multicore architectures. In: The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, XXXVIII-4/C7, 28–32 (2005)

    Google Scholar 

  8. Happ, P.N., Feitosa, R.Q., Bentes, C., Farias, R.: A parallel image segmentation algorithm on GPUs. In: Proceedings of the 4th GEOBIA, pp. 580–585, May 2012

    Google Scholar 

  9. Huang, C.-L.: Parallel image segmentation using modified Hopfield model. Pattern Recogn. Lett. 13(5), 345–353 (1992)

    Article  Google Scholar 

  10. Hagan, A., Zhao, Y.: Parallel 3D Image segmentation of large data sets on a GPU cluster. In: Bebis, G., et al. (eds.) ISVC 2009. LNCS, vol. 5876, pp. 960–969. Springer, Heidelberg (2009). doi:10.1007/978-3-642-10520-3_92

    Chapter  Google Scholar 

  11. Khotanzad, A., Bouarfa, A.: Image segmentation by a parallel, non-parametric histogram based clustering algorithm. Pattern Recogn. 23(9), 961–973 (1990)

    Article  Google Scholar 

  12. Moga, A.N., Gabbouj, M.: Parallel marker-based image segmentation with watershed transformation. J. Parallel Distrib. Comput. 51(1), 27–45 (1998)

    Article  MATH  Google Scholar 

  13. ANL Mathematics and Computer Science. The Message Passing Interface (MPI) standard. http://www.mcs.anl.gov/research/projects/mpi/. Accessed 29 October 2015

  14. NVIDIA. CUDA Parallel Computing. http://www.nvidia.co.uk/object/cuda-parallel-computing-uk.html. Accessed 29 October 2015

  15. Westhoff, A.: Hybrid parallelization of a seeded region growing segmentation of brain images for a GPU cluster. In: ARCS 2014: 27th International Conference on Architecture of Computing Systems - Workshop Proceedings, p. 8. Berlin, Lübeck (Germany), 25 Feb 2014–28 Feb 2014, VDE Verlag, February 2014

    Google Scholar 

  16. Wassenberg, J., Middelmann, W., Sanders, P.: An efficient parallel algorithm for graph-based image segmentation. In: Jiang, X., Petkov, N. (eds.) CAIP 2009. LNCS, vol. 5702, pp. 1003–1010. Springer, Heidelberg (2009). doi:10.1007/978-3-642-03767-2_122

    Chapter  Google Scholar 

  17. Zhuge, Y., Cao, Y., Udupa, J.K., Miller, R.W.: Parallel fuzzy connected image segmentation on GPU. Med. Phys. 38(7), 4365–4371 (2011)

    Article  Google Scholar 

Download references

Acknowledgement

This work was partially supported by the Helmholtz Association portfolio theme “Supercomputing and Modeling for the Human Brain” and by the European Union Seventh Framework Programme (FP7/2007-2013) under grant agreement no. 604102 (Human Brain Project).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anna Lührs .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Lührs, A., Bücker, O., Axer, M. (2016). Towards Large-Scale Fiber Orientation Models of the Brain – Automation and Parallelization of a Seeded Region Growing Segmentation of High-Resolution Brain Section Images. In: Amunts, K., Grandinetti, L., Lippert, T., Petkov, N. (eds) Brain-Inspired Computing. BrainComp 2015. Lecture Notes in Computer Science(), vol 10087. Springer, Cham. https://doi.org/10.1007/978-3-319-50862-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50862-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50861-0

  • Online ISBN: 978-3-319-50862-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics