Skip to main content

Whole-Body Coordination Skill for Dynamic Balancing on a Slackline

  • Conference paper
  • First Online:
New Frontiers in Artificial Intelligence (JSAI-isAI 2015)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10091))

Included in the following conference series:

Abstract

The purpose of the present study is to reveal the fundamental skills for slacklining. A slackline is a flat belt tightly spanned between two anchor points. Because it bounces and swings in all directions, maintaining balance on it is difficult. In the practical field of slackline training, instructors share their skills based on personal experience. In a basic slackline course, they begin by teaching a fundamental skill, such as single-leg standing on a slackline, by explaining how they do it. However, such first-person perspectives on slacklining skills have not been scientifically investigated. According to instructors’ knowledge based on personal experience, we hypothesize the skills for single-leg standing on the slackline. The present study examines current hypotheses by comparing performances at different skill level (i.e., experienced vs. novice). This article introduces our pilot study, including current hypotheses and data from preliminary experiment, and discusses them.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Granacher, U., Iten, N., Roth, R., Gollhofer, A.: Slackline training for balance and strength promotion. Int. J. Sports Med. 31(10), 717–723 (2010)

    Article  Google Scholar 

  2. Keller, M., Pfusterschmied, J., Buchecker, M., Müller, E., Taube, W.: Improved postural control after slackline training is accompanied by reduced H-reflexes. Scand. J. Med. Sci. Sports 22(4), 471–477 (2012)

    Article  Google Scholar 

  3. Pfusterschmied, J., Buchecker, M., Keller, M., Wagner, H., Taube, W., Müller, E.: Supervised slackline training improves postural stability. Eur. J. Sport Sci. 13, 49–57 (2011)

    Article  Google Scholar 

  4. Huber, P., Kleindl, R.: A case study on balance recovery in slacklining. In: ISBS-Conference Proceedings Archive, 1990, pp. 1–4 (2010)

    Google Scholar 

  5. Pfusterschmied, J., Stöggl, T., Buchecker, M., Lindinger, S., Wagner, H., Müller, E.: Effects of 4-week slackline training on lower limb joint motion and muscle activation. J. Sci. Med. Sport 16(6), 562–566 (2013)

    Article  Google Scholar 

  6. Balasubramaniam, R., Wing, A.M.: The dynamics of standing balance. Trends Cogn. Sci. 6(12), 531–536 (2002)

    Article  Google Scholar 

  7. Delignières, D., Torre, K., Bernard, P.L.: Transition from persistent to anti-persistent correlations in postural sway indicates velocity-based control. PLoS Comput. Biol. 7(2), e1001089 (2011)

    Article  Google Scholar 

  8. Riley, M.A., Turvey, M.T.: Variability of determinism in motor behavior. J. Mot. Behav. 34(2), 99–125 (2002)

    Article  Google Scholar 

  9. Bernstein, N.A.: The co-ordination and regulation of movements. Pergamon Press Ltd., Oxford (1967)

    Google Scholar 

  10. Turvey, M.T.: Coordination. Am. Psychol. 45(8), 938–953 (1990)

    Article  Google Scholar 

  11. Latash, M.L.: The Bernstein problem: how does the central nervous system make its choices. In: Latash, M.L., Turvey, M.T. (eds.) Dexterity and Its Development. Psychology Press, London (1996)

    Google Scholar 

  12. Bernstein, N.A.: Dexterity and Its Development. Psychology Press, London (1996)

    Google Scholar 

  13. Haken, H.: Synergetics: An Introduction: Nonequilibrium Phase Transitions and Self-Organization in Physics, Chemistry and Biology. Springer, Heidelberg (1978)

    MATH  Google Scholar 

  14. Nicolis, G., Prigogine, I.: Self-organization in Nonequilibrium Systems: From Dissipative Structures to Order Through Fluctuations. Wiley, New York (1977)

    MATH  Google Scholar 

  15. Kelso, J.A.S.: Dynamic Patterns: The Self-organization of Brain and Behavior. MIT Press, Cambridge (1995)

    Google Scholar 

  16. Kugler, P.N., Turvey, M.T.: Information, Natural Law, and the Self-assembly of Rhythmic Movement. L. Erlbaum Associates, New Jersey (1987)

    Google Scholar 

  17. Newell, K.M.: Constraints on the development of coordination. In: Wade, M.G., Whiting, H.T.A. (eds.) Motor Development in Children: Aspects of Coordination and Control. Springer, Heidelberg (1986)

    Google Scholar 

  18. Thelen, E., Smith, L.B.: A Dynamic Systems Approach to the Development of Cognition and Action. The MIT Press, Cambridge (1996)

    Google Scholar 

  19. Davids, K., Button, C., Bennett, S.: Dynamics of Skill Acquisition: A Constraints-led Approach. Human Kinetics, Champaign (2008)

    Google Scholar 

  20. Tognoli, E., Lagarde, J., DeGuzman, G.C., Kelso, J.A.S.: The phi complex as a neuromarker of human social coordination. Proc. Natl. Acad. Sci. U.S.A. 104(19), 8190–8195 (2007)

    Article  Google Scholar 

  21. Riley, M.A., Richardson, M.J., Shockley, K.D., Ramenzoni, V.C.: Interpersonal synergies. Front. Psychol. 2, 1–7 (2011)

    Article  Google Scholar 

  22. Schmidt, R.C., Fitzpatrick, P., Caron, R., Mergeche, J.: Understanding social motor coordination. Hum. Mov. Sci. 30(5), 834–845 (2011)

    Article  Google Scholar 

  23. Haken, H., Kelso, J.A.S., Bunz, H.: A theoretical model of phase transitions in human hand movements. Biol. Cybern. 51(5), 347–356 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  24. Holden, J.G., Riley, M.A., Gao, J., Torre, K. (Eds.): Fractal Analyses: Statistical and Methodological Innovations and Best Practices (2013)

    Google Scholar 

  25. Van Orden, G.C., Riley, M.A. (eds.): Tutorials in Contemporary Nonlinear Methods for the Behavioral Sciences. National Science Foundation, Arlington (2005)

    Google Scholar 

  26. McCarthy, J., Hayes, P.J.: Some philosophical problems from the standpoint of artificial intelligence. Mach. Intell. 4, 463–502 (1969)

    MATH  Google Scholar 

  27. Brooks, R.A.: Intelligent robot theory of Brooks - why the MIT robot or continue to move forward? Omusha (2006)

    Google Scholar 

  28. Scheier, C., Pfeifer, R.: Understanding Intelligence. MIT Press, Cambridge (2001)

    Google Scholar 

  29. Gibson, J.J.: The Senses Considered as Perceptual Systems. Praeger, New York (1966)

    Google Scholar 

  30. Gibson, J.J.: The Ecological Approach to Visual Perception: Classic Edition, vol. 20. Psychology Press, London (1979)

    Google Scholar 

  31. Turvey, M.T., Fonseca, S.T.: The medium of haptic perception: a tensegrity hypothesis. J. Mot. Behav. 46(3), 143–187 (2014)

    Article  Google Scholar 

  32. Turvey, M.T.: Action and perception at the level of synergies. Hum. Mov. Sci. 26(4), 657–697 (2007)

    Article  Google Scholar 

  33. Carello, C., Silva, P.L., Kinsella-Shaw, J., Turvey, M.T.: Muscle-based perception: theory, research and implications for rehabilitation. Revista Brasileira de Fisioterapia 12(5), 339–350 (2008)

    Google Scholar 

  34. Carello, C., Turvey, M.T.: Physics and psychology of the muscle sense. Curr. Dir. Psychol. Sci. 13(1), 25–28 (2004)

    Article  Google Scholar 

  35. Turvey, M.T., Carello, C.: Obtaining information by dynamic (effortful) touching. Philos. Trans. R. Soc. Lond. B Biol. Sci. 366(1581), 3123–3132 (2011)

    Article  Google Scholar 

  36. Latash, M.L.: Synergy. Oxford University Press, Oxford (2008)

    Book  Google Scholar 

  37. Zbilut, J.P., Giuliani, A., Webber, C.L.: Detecting deterministic signals in exceptionally noisy environments using cross-recurrence quantification. Phys. Lett. A 246(1–2), 122–128 (1998)

    Article  Google Scholar 

  38. Coco, M.I., Dale, R.: Cross-recurrence quantification analysis of categorical and continuous time series: an R package. Front. Psychol. 5, 510 (2014)

    Article  Google Scholar 

  39. Pellecchia, G.L., Shockley, K.D., Turvey, M.T.: Concurrent cognitive task modulates coordination dynamics. Cogn. Sci. 29(4), 531–557 (2005)

    Article  Google Scholar 

  40. Peng, C.-K., Buldyrev, S.V., Havlin, S., Simons, M., Stanley, H.E., Goldberger, A.L.: Mosaic organization of DNA nucleotides. Phys. Rev. E 49(2), 1685–1689 (1994)

    Article  Google Scholar 

  41. Peng, C.-K., Havlin, S., Stanley, H.E., Goldberger, A.L.: Quantification of scaling exponents and crossover phenomena in nonstationary heartbeat time series. Chaos (Woodbury, N.Y.) 5(1), 82–87 (1995)

    Article  Google Scholar 

  42. Eke, A., Herman, P., Kocsis, L., Kozak, L.R.: Fractal characterization of complexity in temporal physiological signals. Physiol. Meas. 23(1), R1–R38 (2002)

    Article  Google Scholar 

  43. Delignières, D., Ramdani, S., Lemoine, L., Torre, K., Fortes, M., Ninot, G.: Fractal analyses for “short” time series: a re-assessment of classical methods. J. Math. Psychol. 50(6), 525–544 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  44. Hausdorff, J.M.: Gait dynamics in Parkinson’s disease: common and distinct behavior among stride length, gait variability, and fractal-like scaling. Chaos Interdisc. J. Nonlinear Sci. 19(2), 026113 (2009)

    Article  MathSciNet  Google Scholar 

  45. Arzamarski, R., Isenhower, R.W., Kay, B.A., Turvey, M.T., Michaels, C.F.: Effects of intention and learning on attention to information in dynamic touch. Atten. Percept. Psychophys. 72(3), 721–735 (2010)

    Article  Google Scholar 

  46. Shockley, K.D.: Cross recurrence quantification of interpersonal postural activity. In: Riley, M., Van Orden, G. (eds.) Tutorials in Contemporary Nonlinear Methods for the Behavioral Sciences, pp. 142–177. National Science Foundation, Arlington (2005)

    Google Scholar 

  47. Zbilut, J.P., Webber, C.L.: Embeddings and delays as derived from quantification of recurrence plots. Phys. Lett. A 171(3–4), 199–203 (1992)

    Article  Google Scholar 

  48. Webber, C.L., Zbilut, J.P.: Recurrence quantification analysis of nonlinear dynamical systems. In: Riley, M., Van Orden, G. (eds.) Tutorials in Contemporary Nonlinear Methods for the Behavioral Sciences, pp. 26–94. National Science Foundation, Arlington (2005)

    Google Scholar 

  49. Marwan, N.: Cross recurrence plot toolbox (2013). http://tocsy.pik-potsdam.de/CRPtoolbox

  50. Hardstone, R., Poil, S.-S., Schiavone, G., Jansen, R., Nikulin, V.V., Mansvelder, H.D., Linkenkaer-Hansen, K.: Detrended fluctuation analysis: a scale-free view on neuronal oscillations. Front. Physiol. 3, 1–13 (2012)

    Article  Google Scholar 

  51. Goldberger, A.L., Amaral, L.A.N., Hausdorff, J.M., Ivanov, P.C., Peng, C.-K., Stanley, H.E.: Fractal dynamics in physiology: alterations with disease and aging. Proc. Natl. Acad. Sci. 99(Supplement 1), 2466–2472 (2002)

    Article  Google Scholar 

  52. Van Orden, G.C., Holden, J.G., Turvey, M.T.: Human cognition and 1/f scaling. J. Exp. Psychol. Gen. 134(1), 117–123 (2005)

    Article  Google Scholar 

  53. Lipsitz, L.A., Goldberger, A.L.: Loss of “complexity” and aging. JAMA 267(13), 1806 (1992)

    Article  Google Scholar 

  54. Dixon, J.A., Stephen, D.G., Boncoddo, R., Anastas, J.R.: The self-organization of cognitive structure. Psychol. Learn. Motiv. 52, 343–384 (2010)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kentaro Kodama .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Kodama, K., Kikuchi, Y., Yamagiwa, H. (2017). Whole-Body Coordination Skill for Dynamic Balancing on a Slackline. In: Otake, M., Kurahashi, S., Ota, Y., Satoh, K., Bekki, D. (eds) New Frontiers in Artificial Intelligence. JSAI-isAI 2015. Lecture Notes in Computer Science(), vol 10091. Springer, Cham. https://doi.org/10.1007/978-3-319-50953-2_39

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-50953-2_39

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-50952-5

  • Online ISBN: 978-3-319-50953-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics