Skip to main content

Statistical Shape Model with Random Walks for Inner Ear Segmentation

  • Conference paper
  • First Online:
Spectral and Shape Analysis in Medical Imaging (SeSAMI 2016)

Abstract

Cochlear implants can restore hearing to completely or partially deaf patients. The intervention planning can be aided by providing a patient-specific model of the inner ear. Such a model has to be built from high resolution images with accurate segmentations. Thus, a precise segmentation is required. We propose a new framework for segmentation of micro-CT cochlear images using random walks combined with a statistical shape model (SSM). The SSM allows us to constrain the less contrasted areas and ensures valid inner ear shape outputs. Additionally, a topology preservation method is proposed to avoid the leakage in the regions with no contrast.

The research leading to these results received funding from the European Union Seventh Frame Programme (FP7/2007-2013) under grant agreement 304857.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    http://www.hear-eu.eu/.

References

  1. Ceresa, M., et al.: Patient-specific simulation of implant placement and function for cochlear implantation surgery planning. In: Golland, P., Hata, N., Barillot, C., Hornegger, J., Howe, R. (eds.) MICCAI 2014. LNCS, vol. 8674, pp. 49–56. Springer, Heidelberg (2014). doi:10.1007/978-3-319-10470-6_7

    Google Scholar 

  2. Ceresa, M., Mangado, N., Andrews, R.J., Ballester, M.A.G.: Computational models for predicting outcomes of neuroprosthesis implantation: the case of cochlear implants. Mol. Neurobiol. 52(2), 934–941 (2015)

    Article  Google Scholar 

  3. Braun, K., Böhnke, F., Stark, T.: Three-dimensional representation of the human cochlea using micro-computed tomography data: presenting an anatomical model for further numerical calculations. Acta Oto-Laryngologica 132(6), 603–613 (2012)

    Article  Google Scholar 

  4. Poznyakovskiy, A.A., Zahnert, T., Kalaidzidis, Y., Lazurashvili, N., Schmidt, R., Hardtke, H.-J., Fischer, B., Yarin, Y.M.: A segmentation method to obtain a complete geometry model of the hearing organ. Hear. Res. 282(1), 25–34 (2011)

    Article  Google Scholar 

  5. Noble, J.H., Labadie, R.F., Majdani, O., Dawant, B.M.: Automatic segmentation of intracochlear anatomy in conventional CT. IEEE Trans. Biomed. Eng. 58(9), 2625–2632 (2011)

    Article  Google Scholar 

  6. Cootes, T.F., Taylor, C.J., Cooper, D.H., Graham, J.: Active shape models-their training and application. Comput. Vis. Image Underst. 61(1), 38–59 (1995)

    Article  Google Scholar 

  7. Pujadas, E.R., Kjer, H.M., Piella, G., Ceresa, M., Ballester, M.A.G.: Random walks with shape prior for cochlea segmentation in ex vivo \(\mu \)CT. Int. J. Comput. Assist. Radiol. Surg. 11(9), 1647–1659 (2016)

    Article  Google Scholar 

  8. Pujadas, E.R., Kjer, H.M., Piella, G., Ballester, M.A.G.: Iterated random walks with shape prior. Image Vis. Comput. 54, 12–21 (2016)

    Article  Google Scholar 

  9. Grady, L.: Random walks for image segmentation. IEEE Trans. Pattern Anal. Mach. Intell. 28(11), 1768–1783 (2006)

    Article  Google Scholar 

  10. Boykov, Y., Veksler, O.: Graph cuts in vision and graphics: theories and applications. In: Paragios, N., Chen, Y., Faugeras, O. (eds.) Handbook of Mathematical Models in Computer Vision, pp. 79–96. Springer, Heidelberg (2006)

    Chapter  Google Scholar 

  11. Boykov, Y., Veksler, O., Zabih, R.: Fast approximate energy minimization via graph cuts. IEEE Trans. Pattern Anal. Mach. Intell. 23(11), 1222–1239 (2001)

    Article  Google Scholar 

  12. Li, K.-C., Su, H.-R., Lai, S.-H.: Pedestrian image segmentation via shape-prior constrained random walks. In: Ho, Y.-S. (ed.) PSIVT 2011. LNCS, vol. 7088, pp. 215–226. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25346-1_20

    Chapter  Google Scholar 

  13. Baudin, P.-Y., Azzabou, N., Carlier, P.G., Paragios, N.: Prior knowledge, random walks and human skeletal muscle segmentation. In: Ayache, N., Delingette, H., Golland, P., Mori, K. (eds.) MICCAI 2012. LNCS, vol. 7510, pp. 569–576. Springer, Heidelberg (2012). doi:10.1007/978-3-642-33415-3_70

    Chapter  Google Scholar 

  14. Li, A., Li, C., Wang, X., Eberl, S., Feng, D.D., Fulham, M.: Automated segmentation of prostate MR images using prior knowledge enhanced random walker. In: 2013 International Conference on Digital Image Computing: Techniques and Applications (DICTA), pp. 1–7. IEEE (2013)

    Google Scholar 

  15. Baudin, P.-Y., Azzabou, N., Carlier, P.G., Paragios, N.: Manifold-enhanced segmentation through random walks on linear subspace priors. In: Proceedings of the British Machine Vision Conference (2012)

    Google Scholar 

  16. Baudin, P.-Y.: De la segmentation au moyen de graphes d’images de muscles striés squelettiques acquises par RMN. Ph.D. thesis, Ecole Centrale Paris (2013)

    Google Scholar 

  17. Ting, Y., Xiaoming Liu, S., Lim, N.K., Tu, P.H.: Automatic surveillance video matting using a shape prior. In: 2011 IEEE International Conference on Computer Vision Workshops (ICCV Workshops), pp. 1761–1768. IEEE (2011)

    Google Scholar 

  18. Eslami, A., Karamalis, A., Katouzian, A., Navab, N.: Segmentation by retrieval with guided random walks: application to left ventricle segmentation in MRI. Med. Image Anal. 17(2), 236–253 (2013)

    Article  Google Scholar 

  19. Lee, Y.-T., Te-Feng, S., Hong-Ren, S., Lai, S.-H., Lee, T.-C., Shih, M.-Y.: Human segmentation from video by combining random walks with human shape prior adaption. In: 2013 Asia-Pacific Signal and Information Processing Association Annual Summit and Conference (APSIPA), pp. 1–4. IEEE (2013)

    Google Scholar 

  20. Papoutsakis, K.E., Argyros, A.A.: Object tracking and segmentation in a closed loop. In: Bebis, G., et al. (eds.) ISVC 2010. LNCS, vol. 6453, pp. 405–416. Springer, Heidelberg (2010). doi:10.1007/978-3-642-17289-2_39

    Chapter  Google Scholar 

  21. Grady, L.: Multilabel random walker image segmentation using prior models. In: IEEE Computer Society Conference on Computer Vision and Pattern Recognition, CVPR 2005, vol. 1, pp. 763–770. IEEE (2005)

    Google Scholar 

  22. Cremers, D., Grady, L.: Statistical priors for efficient combinatorial optimization via graph cuts. In: Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006. LNCS, vol. 3953, pp. 263–274. Springer, Heidelberg (2006). doi:10.1007/11744078_21

    Chapter  Google Scholar 

  23. Malcolm, J., Rathi, Y., Tannenbaum, A.: Graph cut segmentation with nonlinear shape priors. In: 2007 IEEE International Conference on Image Processing, vol. 4, pp. 365–368. IEEE (2007)

    Google Scholar 

  24. Zhu-Jacquot, J., Zabih, R.: Graph cuts segmentation with statistical shape priors for medical images. In: Third International IEEE Conference on Signal-Image Technologies and Internet-Based System, SITIS 2007, pp. 631–635. IEEE (2007)

    Google Scholar 

  25. El-Zehiry, N., Elmaghraby, A.: Graph cut based deformable model with statistical shape priors. In: 19th International Conference on Pattern Recognition, ICPR 2008, pp. 1–4. IEEE (2008)

    Google Scholar 

  26. Vu, N., Manjunath, B.S.: Shape prior segmentation of multiple objects with graph cuts. In: 2008 IEEE Conference on Computer Vision and Pattern Recognition, CVPR 2008, pp. 1–8. IEEE (2008)

    Google Scholar 

  27. Chen, X., Udupa, J.K., Alavi, A., Torigian, D.A.: GC-ASM synergistic integration of graph-cut and active shape model strategies for medical image segmentation. Comput. Vis. Image Underst. 117(5), 513–524 (2013)

    Article  Google Scholar 

  28. Chang, J.C., Chou, T.: Iterative graph cuts for image segmentation with a nonlinear statistical shape prior. J. Math. Imaging Vis. 49(1), 87–97 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Leventon, M.E., Eric, W., Grimson, L., Faugeras, O.: Statistical shape influence in geodesic active contours. In: 2000 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition, vol. 1, pp. 316–323. IEEE (2000)

    Google Scholar 

  30. Tsai, A., Yezzi, A., Wells, W., Tempany, C., Tucker, D., Fan, A., Grimson, W.E., Willsky, A.: A shape-based approach to the segmentation of medical imagery using level sets. IEEE Trans. Med. Imaging 22(2), 137–154 (2003)

    Article  Google Scholar 

  31. Cremers, D.: Dynamical statistical shape priors for level set-based tracking. IEEE Trans. Pattern Anal. Mach. Intell. 28(8), 1262–1273 (2006)

    Article  Google Scholar 

  32. Cremers, D., Rousson, M., Deriche, R.: A review of statistical approaches to level set segmentation: integrating color, texture, motion and shape. Int. J. Comput. Vis. 72(2), 195–215 (2007)

    Article  Google Scholar 

  33. Pujadas, E.R., Kjer, H.M., Vera, S., Ceresa, M., Ballester, M.A.G.: Cochlea segmentation using iterated random walks with shape prior. In: SPIE Medical Imaging, p. 97842U. International Society for Optics and Photonics (2016)

    Google Scholar 

  34. Pujadas, E.R., Reisert, M.: Shape-based normalized cuts using spectral relaxation for biomedical segmentation. IEEE Trans. Image Process. 23(1), 163–170 (2014)

    Article  MathSciNet  Google Scholar 

  35. Ruiz, E., Reisert, M.: Image segmentation using normalized cuts with multiple priors. In: SPIE Medical Imaging, p. 866937. International Society for Optics and Photonics (2013)

    Google Scholar 

  36. Klein, S., Staring, M., Murphy, K., Viergever, M.A., Pluim, J.P.W.: Elastix: a toolbox for intensity-based medical image registration. IEEE Trans. Med. Imaging 29(1), 196–205 (2010)

    Article  Google Scholar 

  37. Kjer, H.M., Fagertun, J., Vera, S., Gil, D., Ballester, M.Á.G., Paulsen, R.R.: Free-form image registration of human cochlear \(\mu \)CT data using skeleton similarity as anatomical prior. Pattern Recogn. Lett. 76, 76–82 (2015)

    Article  Google Scholar 

  38. Lüthi, M., Blanc, R., Albrecht, T., Gass, T., Goksel, O., Büchler, P., Kistler, M., Bousleiman, H., Reyes, M., Cattin, P., Vetter, T.: Statismo - a framework for PCA based statistical models. Insight J. 1, 1–18 (2012)

    Google Scholar 

  39. Klein, S., Pluim, J.P.W., Staring, M., Viergever, M.A.: Adaptive stochastic gradient descent optimisation for image registration. Int. J. Comput. Vis. 81(3), 227–239 (2009)

    Article  Google Scholar 

  40. Kohli, P., Rihan, J., Bray, M., Torr, P.H.S.: Simultaneous segmentation and pose estimation of humans using dynamic graph cuts. Int. J. Comput. Vis. 79(3), 285–298 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

The research leading to these results received funding from the European Union Seventh Frame Programme (FP7/2007–2013) under grant agreement 304857, HEAR-EU Project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Esmeralda Ruiz Pujadas .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Ruiz Pujadas, E., Kjer, H.M., Piella, G., Ballester, M.A.G. (2016). Statistical Shape Model with Random Walks for Inner Ear Segmentation. In: Reuter, M., Wachinger, C., Lombaert, H. (eds) Spectral and Shape Analysis in Medical Imaging. SeSAMI 2016. Lecture Notes in Computer Science(), vol 10126. Springer, Cham. https://doi.org/10.1007/978-3-319-51237-2_8

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51237-2_8

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51236-5

  • Online ISBN: 978-3-319-51237-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics