Skip to main content

Utilizing Clonal Selection Theory Inspired Algorithms and K-Means Clustering for Predicting OPEC Carbon Dioxide Emissions from Petroleum Consumption

  • Conference paper
  • First Online:
Recent Advances on Soft Computing and Data Mining (SCDM 2016)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 549))

Included in the following conference series:

  • 1243 Accesses

Abstract

The prediction of carbon dioxide (CO2) emissions from petroleum consumption inspired and motivated this research. Over the years, the rate of emissions of CO2 continues to multiply, resulting in global warming. This paper thus proposes the use of clonal selection theory inspired algorithms; CLONALG and AIRS to forecast global CO2 emissions. The K-means algorithm divides the data into groups of similar and meaningful patterns. Comparative simulations with multi-layer Perceptron, IBk, fuzzy-rough nearest neighbor, and vaguely quantified nearest neighbor reveal that the CLONALG and AIRS produced outstanding results, and are able to generate highest detection rates and lowest false alarm rates. As such, gathering useful information with the accurate prediction of CO2 emissions can help to reduce the emission of CO2 contributions to global warming which assist in policies on climate change.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Sari, R., Soytas, U.: Are global warming and economic growth compatible? Evidence from five OPEC countries? Appl. Energy 86, 1887–1893 (2009)

    Article  Google Scholar 

  2. Chen, T., Wang, Y.C.: A fuzzy-neural approach for global CO2 concentration forecasting. Intell. Data Anal. 15, 763–777 (2011)

    Article  Google Scholar 

  3. Chen, T.: A collaborative fuzzy-neural system for global CO2 concentration forecasting. Int. J. Innov. Comput. Inf. Control 8, 7679–7696 (2012)

    Google Scholar 

  4. Tang, N., Zhang, D.-J.: Application of a load forecasting model based on improved grey neural network in the smart grid. Energy Procedia. 12, 180–184 (2011)

    Article  Google Scholar 

  5. de Castro, L.N., von Zuben, F.J.: The clonal selection algorithm with engineering applications. In: Proceedings of GECCO, pp. 36–39 (2000)

    Google Scholar 

  6. Watkins, A.: A resource limited artificial immune classifier (2001)

    Google Scholar 

  7. Lasisi, A., Ghazali, R., Herawan, T., Lasisi, F., Deris, M.M.: Knowledge extraction of agricultural data using artificial immune system. In: 2015 12th International Conference on Fuzzy Systems and Knowledge Discovery (FSKD), pp. 1653–1658 (2015)

    Google Scholar 

  8. Bersini, H., Varela, F.J.: Hints for adaptive problem solving gleaned from immune networks. In: Schwefel, H.P., Männer, R. (eds.) PPSN 1990. LNCS, vol. 496, pp. 343–354. Springer, Berlin, Heidelberg (1991). doi:10.1007/BFb0029775

    Chapter  Google Scholar 

  9. Forrest, S., Perelson, A.S., Allen, L., Cherukuri, R.: Self-nonself discrimination in a computer. In: 1994 Proceedings of IEEE Computer Society Symposium on Research in Security and Privacy, 1994, pp. 202–212 (1994)

    Google Scholar 

  10. Lasisi, A., Ghazali, R., Herawan, T.: Negative selection algorithm: a survey on the epistemology of generating detectors. In: Herawan, T., Deris, M.M., Abawajy, J. (eds.). LNEE, vol. 285, pp. 167–176. Springer, Singapore (2014). doi:10.1007/978-981-4585-18-7_20

    Chapter  Google Scholar 

  11. Lasisi, A., Ghazali, R., Herawan, T.: Comparative performance analysis of negative selection algorithm with immune and classification algorithms. In: Herawan, T., Ghazali, R., Deris, M.M. (eds.). AISC, vol. 287, pp. 441–452. Springer, Cham (2014). doi:10.1007/978-3-319-07692-8_42

    Chapter  Google Scholar 

  12. Burnet, S.F.M.: The Clonal Selection Theory of Acquired Immunity. University Press Cambridge, Cambridge (1959)

    Book  Google Scholar 

  13. Everitt, B.S., Landau, S., Leese, M.: Cluster analysis. Arnold, London (2001)

    MATH  Google Scholar 

  14. Xu, R., Wunsch, D.: Survey of clustering algorithms. IEEE Trans. Neural Netw. 16, 645–678 (2005)

    Article  Google Scholar 

  15. Jain, A.K.: Data clustering: 50 years beyond K-means. Pattern Recogn. Lett. 31, 651–666 (2010)

    Article  Google Scholar 

  16. Fine, T.L.: Feedforward Neural Network Methodology. Springer Science & Business Media, New York (1999)

    MATH  Google Scholar 

  17. Aha, D.W., Kibler, D., Albert, M.K.: Instance-based learning algorithms. Mach. Learn. 6, 37–66 (1991)

    Article  Google Scholar 

  18. Jensen, R., Cornelis, C.: A new approach to fuzzy-rough nearest neighbour classification. In: Chan, C.C., Grzymala-Busse, J., Ziarko, W. (eds.) Rough Sets and Current Trends in Computing, pp. 310–319. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  19. Jensen, R., Cornelis, C.: Fuzzy-rough nearest neighbour classification and prediction. Theor. Comput. Sci. 412, 5871–5884 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Energy Information Administration of the US Department of Energy (2014)

    Google Scholar 

  21. Chiroma, H., Abdulkareem, S., Abubakar, A., Usman, M.J.: Computational intelligence techniques with application to crude oil price projection: a literature survey from 2001–2012. Neural Netw. World 23, 523 (2013)

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Office for Research, Innovation, Commercialization, and Consultancy Management (ORICC), Universiti Tun Hussein Onn Malaysia (UTHM), and Ministry of Higher Education (MOHE) Malaysia under the Fundamental Research Grant Scheme (FRGS) Vote No. 1235.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayodele Lasisi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Lasisi, A., Ghazali, R., Chiroma, H. (2017). Utilizing Clonal Selection Theory Inspired Algorithms and K-Means Clustering for Predicting OPEC Carbon Dioxide Emissions from Petroleum Consumption. In: Herawan, T., Ghazali, R., Nawi, N.M., Deris, M.M. (eds) Recent Advances on Soft Computing and Data Mining. SCDM 2016. Advances in Intelligent Systems and Computing, vol 549. Springer, Cham. https://doi.org/10.1007/978-3-319-51281-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51281-5_11

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51279-2

  • Online ISBN: 978-3-319-51281-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics