Abstract
Most of the algorithm and data structure facing a computational problem when they are required to deal with a highly sparse and dense dataset. Therefore, in this paper we proposed a complete model for mining least patterns known as Efficient Least Pattern Mining Model (ELP-M2) with LP-Tree data structure and LP-Growth algorithm. The comparative study is made with the well-know LP-Tree data structure and LP-Growth algorithm. Two benchmarked datasets from FIMI repository called Kosarak and T40I10D100K were employed. The experimental results with the first and second datasets show that the LP-Growth algorithm is more efficient and outperformed the FP-Growth algorithm at 14% and 57%, respectively.
Similar content being viewed by others
References
Fayyad, U., Patesesky-Shapiro, G., Smyth, P., Uthurusamy, R.: Advances in Knowledge Discovery and Data Mining. MIT Press, Cambridge (1996)
Agrawal, R., Imielinski, T., Swami, A.: Database mining: a performance perspective. IEEE Trans. Knowl. Data Eng. 5(6), 914–925 (1993)
Hipp, J., Guntzer, U. Nakhaeizadeh, G.: Algorithms for association rule mining – a general survey and comparison. In: Proceedings of SIGKDD Explorations. ACM, New York (2000). ACM SIGKDD 2(1), 58–64
Zhou, L., Yau, S.: Association rule and quantitative association rule mining among infrequent items. In: Koh, Y.S., Rountree, N. (eds.) Rare Association Rule Mining and Knowledge Discovery: Technologies for Infrequent and Critical Event Detection, pp. 15–32. IFI-Global, Pennsylvania (2010)
Tan, P.-N., Steinbach, M., Kumar, V.: Introduction in Data Mining. Addison Wesley, Boston (2006)
Dunham, M.H.: Data Mining: Introductory and Advanced Topics. Prentice-Hall, New Jersey (2003)
Han, J., Kamber, M.: Data Mining Concepts and Techniques. Morgan Kaufmann, San Francisco (2001)
Abdullah, Z., Herawan, T., Noraziah, A., Deris, M.M.: Extracting highly positive association rules from students’ enrollment data. Procedia Soc. Behav. Sci. 28, 107–111 (2011)
Abdullah, Z., Herawan, T., Noraziah, A., Deris, M.M.: Mining significant association rules from educational data using critical relative support approach. Procedia Soc. Behav. Sci. 28, 97–101 (2011)
Yun, U., Ryu, K.H.: Approximate weighted frequent pattern mining with/without noisy environments. Knowl. Based Syst. 24, 73–82 (2011)
Duraiswamy, K., Jayanthi, B.: A novel preprocessing algorithm for frequent pattern mining in multidatasets. Int. J. Data Eng. (IJDE) 2(3), 111–118 (2011)
Leung, C.K.-S., Jiang, F.: Frequent pattern mining from time-fading streams of uncertain data. In: Cuzzocrea, A., Dayal, U. (eds.) DaWaK 2011. LNCS, vol. 6862, pp. 252–264. Springer, Heidelberg (2011). doi:10.1007/978-3-642-23544-3_19
Leung, C.K.-S., Jiang, F., Hayduk, Y.: A landmark-model based system for mining frequent patterns from uncertain data streams. In: Proceedings IDEAS 2011, pp. 249–250. ACM Press (2011)
Abdullah, Z., Herawan, T., Deris, M.M.: Scalable model for mining critical least association rules. In: Zhu, R., Zhang, Y., Liu, B., Liu, C. (eds.) ICICA 2010. LNCS, vol. 6377, pp. 509–516. Springer, Heidelberg (2010). doi:10.1007/978-3-642-16167-4_65
Abdullah, Z., Herawan, T., Deris, M.M.: Mining significant least association rules using fast SLP-growth algorithm. In: Kim, T.-h., Adeli, H. (eds.) ACN/AST/ISA/UCMA -2010. LNCS, vol. 6059, pp. 324–336. Springer, Heidelberg (2010). doi:10.1007/978-3-642-13577-4_28
Abdullah, Z., Herawan, T., Mat Deris, M.: An alternative measure for mining weighted least association rule and its framework. In: Zain, J.M., Wan Mohd, W., El-Qawasmeh, E. (eds.) ICSECS 2011. CCIS, vol. 180, pp. 480–494. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22191-0_42
Abdullah, Z., Herawan, T., Deris, M.M.: Visualizing the construction of incremental disorder trie itemset data structure (DOSTrieIT) for frequent pattern tree (FP-Tree). In: Badioze Zaman, H., Robinson, P., Petrou, M., Olivier, P., Shih, Timothy, K., Velastin, S., Nyström, I. (eds.) IVIC 2011. LNCS, vol. 7066, pp. 183–195. Springer, Heidelberg (2011). doi:10.1007/978-3-642-25191-7_18
Herawan, T., Yanto, I.T.R., Mat Deris, M.: Soft set approach for maximal association rules mining. In: Ślęzak, D., Kim, T.-h., Zhang, Y., Ma, J., Chung, K.-i. (eds.) DTA 2009. CCIS, vol. 64, pp. 163–170. Springer, Heidelberg (2009). doi:10.1007/978-3-642-10583-8_19
Herawan, T., Yanto, I.T.R., Deris, M.M.: SMARViz: soft maximal association rules visualization. In: Badioze Zaman, H., Robinson, P., Petrou, M., Olivier, P., Schröder, H., Shih, T.K. (eds.) IVIC 2009. LNCS, vol. 5857, pp. 664–674. Springer, Heidelberg (2009). doi:10.1007/978-3-642-05036-7_63
Herawan, T., Deris, M.M.: A soft set approach for association rules mining. Knowl. Based Syst. 24(1), 186–195 (2011)
Herawan, T., Vitasari, P., Abdullah, Z.: Mining interesting association rules of student suffering mathematics anxiety. In: Zain, J.M., Wan Mohd, W., El-Qawasmeh, E. (eds.) ICSECS 2011. CCIS, vol. 180, pp. 495–508. Springer, Heidelberg (2011). doi:10.1007/978-3-642-22191-0_43
Abdullah, Z., Herawan, T., Deris, M.M.: Efficient and scalable model for mining critical least association rules. J. Chin. Inst. Eng. 35(4), 547–554 (2012). In a special issue from AST/UCMA/ISA/ACN 2010
Herawan, T., Noraziah, A., Abdullah, Z., Deris, M.M., Abawajy, J.H.: IPMA: indirect patterns mining algorithm. In: Nguyen, N.-T., Hoang, K., Jȩdrzejowicz, P. (eds.) ICCCI 2012. SCI, vol. 457, pp. 187–196. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34300-1_18
Herawan, T., Noraziah, A., Abdullah, Z., Deris, M.M., Abawajy, J.H.: EFP-M2: efficient model for mining frequent patterns in transactional database. In: Nguyen, N.-T., Hoang, K., Jȩdrzejowicz, P. (eds.) ICCCI 2012. LNCS (LNAI), vol. 7654, pp. 29–38. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34707-8_4
Noraziah, A., Abdullah, Z., Herawan, T., Deris, M.M.: Scalable technique to discover items support from trie data structure. In: Liu, B., Ma, M., Chang, J. (eds.) ICICA 2012. LNCS, vol. 7473, pp. 500–507. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34062-8_65
Noraziah, A., Abdullah, Z., Herawan, T., Deris, M.M.: WLAR-Viz: weighted least association rules visualization. In: Liu, B., Ma, M., Chang, J. (eds.) ICICA 2012. LNCS, vol. 7473, pp. 592–599. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34062-8_77
Herawan, T., Abdullah, Z.: CNAR-M: a model for mining critical negative association rules. In: Li, Z., Li, X., Liu, Y., Cai, Z. (eds.) ISICA 2012. CCIS, vol. 316, pp. 170–179. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34289-9_20
Abdullah, Z., Herawan, T., Noraziah, A., Deris, M.M.: DFP-growth: an efficient algorithm for mining frequent patterns in dynamic database. In: Liu, B., Ma, M., Chang, J. (eds.) ICICA 2012. LNCS, vol. 7473, pp. 51–58. Springer, Heidelberg (2012). doi:10.1007/978-3-642-34062-8_7
Khan, M.S., Muyeba, M.K., Coenen, F., Reid, D., Tawfik, H.: Finding associations in composite data sets: the Cfarm algorithm. Int. J. Data Warehous. Min. 7(3), 1–29 (2011)
Koh, Y.S., Pears, R., Dobbie, G.: Automatic item weight generation for pattern mining and its application. Int. J. Data Warehous. Min. 7(3), 30–49 (2011)
Jiang, B., Hu, X., Wei, Q., Song, J., Han, C., Liang, M.: Weak ratio rules: a generalized Boolean association rules. Int. J. Data Warehous. Min. 7(3), 50–87 (2011)
Giannikopoulos, P., Varlamis, I., Eirinaki, M.: Mining frequent generalized patterns for web personalization in the presence of taxonomies. Int. J. Data Warehous. Min. 6(1), 58–76 (2010)
Lu, J., Chen, W., Keech, M.: Graph-based modelling of concurrent sequential patterns. Int. J. Data Warehous. Min. 6(2), 41–58 (2010)
Kiran, R.U., Reddy, P.K.: An improved frequent pattern-growth approach to discover rare association rules. In: Proceedings of the International Conference on Knowledge Discovery and Information Retrieval (ICKDIR 2009), pp. 43–52. INSTICC Press, Funchal
Koh, Y.S., Rountree, N., O’keefe, R.A.: Finding non-coincidental sporadic rules using Apriori-inverse. Int. J. Data Warehous. Min. 2(2), 38–54 (2006)
Ashrafi, M.Z., Taniar, D., Smith, K.A.: ODAM: an optimized distributed association rule mining algorithm. IEEE Distrib. Syst. Online 5(3), 1–18 (2004)
Ashrafi, M.Z., Taniar, D., Smith, K.A.: Redundant association rules reduction techniques. Int. J. Bus. Intell. Data Min. 2(1), 29–63 (2007)
Taniar, D., Rahayu, W., Lee, V.C.S., Daly, O.: Exception rules in association rule mining. Appl. Math. Comput. 205(2), 735–750 (2008)
Koh, Y.S., Rountree, N.: Finding sporadic rules using Apriori-inverse. In: Ho, T.B., Cheung, D., Liu, H. (eds.) PAKDD 2005. LNCS (LNAI), vol. 3518, pp. 97–106. Springer, Heidelberg (2005). doi:10.1007/11430919_13
Yun, H., Ha, D., Hwang, B., Ryu, K.H.: Mining association rules on significant rare data using relative support. J. Syst. Softw. 67(3), 181–191 (2003)
Liu, B., Hsu, W., Ma, Y.: Mining association rules with multiple minimum support. In: Proceedings of the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (KDD 1999), pp. 337–341. ACM, San Diego (1999)
Wang, K., He, Y., Han, J.: Pushing support constraints into association rules mining. IEEE Trans. Knowl. Data Eng. 15(3), 642–658 (2003)
Ding, J.: Efficient association rule mining among infrequent items. Ph.D. Thesis, University of Illinois at Chicago (2005)
Han, J., Pei, H., Yin, Y.: Mining frequent patterns without candidate generation. In: Proceedings of the 2000 ACM SIGMOD, pp. 1–12. ACM, Texas (2000)
Liu, G., Lu, H., Lou, W., Xu, Y., Yu, J.X.: Efficient mining of frequent patterns using ascending frequency ordered prefix-tree. Data Min. Knowl. Disc. 9, 249–274 (2004)
Koh, J.-L., Shieh, S.-F.: An efficient approach for maintaining association rules based on adjusting FP-Tree structures. In: Lee, Y., Li, J., Whang, K.-Y., Lee, D. (eds.) DASFAA 2004. LNCS, vol. 2973, pp. 417–424. Springer, Heidelberg (2004). doi:10.1007/978-3-540-24571-1_38
Li, X., Deng, Z.-H., Tang, S.: A fast algorithm for maintenance of association rules in incremental databases. In: Li, X., Zaïane, O.R., Li, Z. (eds.) ADMA 2006. LNCS (LNAI), vol. 4093, pp. 56–63. Springer, Heidelberg (2006). doi:10.1007/11811305_5
Cheung, W., and Zaïane, O.R.: Incremental Mining of Frequent Patterns without Candidate Generation of Support Constraint. In Proc. of the 7th International Database Engineering and Applications Symposium (IDEAS’03), IEEE Computer Society, New York, 111–117 (2003)
Hong, T.-P., Lin, J.-W., We, Y.-L.: Incrementally fast updated frequent pattern trees. Int. J. Expert Syst. Appl. 34(4), 2424–2435 (2008)
Tanbeer, S.K., Ahmed, C.F., Jeong, B.-S., Lee, Y.-K.: CP-tree: a tree structure for single-pass frequent pattern mining. In: Washio, T., Suzuki, E., Ting, K.M., Inokuchi, A. (eds.) PAKDD 2008. LNCS (LNAI), vol. 5012, pp. 1022–1027. Springer, Heidelberg (2008). doi:10.1007/978-3-540-68125-0_108
Totad, S.G., Geeta, R.B., Reddy, P.P.: Batch processing for incremental FP-Tree construction. Int. J. Comput. Appl. 5(5), 28–32 (2010)
Frequent Itemset Mining Dataset Repository. http://fimi.cs.helsinki.fi/data/
Acknowledgement
This work is supported by the research grant from Research Acceleration Center Excellence (RACE) of Universiti Kebangsaan Malaysia.
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Abdullah, Z., Ngah, A., Herawan, T., Ahmad, N., Mohamad, S.Z., Hamdan, A.R. (2017). ELP-M2: An Efficient Model for Mining Least Patterns from Data Repository. In: Herawan, T., Ghazali, R., Nawi, N.M., Deris, M.M. (eds) Recent Advances on Soft Computing and Data Mining. SCDM 2016. Advances in Intelligent Systems and Computing, vol 549. Springer, Cham. https://doi.org/10.1007/978-3-319-51281-5_23
Download citation
DOI: https://doi.org/10.1007/978-3-319-51281-5_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-51279-2
Online ISBN: 978-3-319-51281-5
eBook Packages: EngineeringEngineering (R0)