Skip to main content

On Mining Association Rules of Real-Valued Items Using Fuzzy Soft Set

  • Conference paper
  • First Online:
Recent Advances on Soft Computing and Data Mining (SCDM 2016)

Part of the book series: Advances in Intelligent Systems and Computing ((AISC,volume 549))

Included in the following conference series:

  • 1226 Accesses

Abstract

Association rules is s one of data mining method that have been implemented in many discipline areas. This rule is able to find interesting relation between the data in a large data set. The traditional association rule has been employed to handle crisp set of items. However, for real-valued items, the traditional association rules fail to handle them. This paper introduces an alternative method for mining association rules for real-valued items. It is based on the concept of hybridization between fuzzy and soft sets. This combination is called fuzzy soft association rules. The results show that the introduced concept was able to mine an interesting association rules among the real number of items where they are represented in fuzzy soft set. Furthermore, it has the ability in dealing with uncertainty or vague data.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Institutional subscriptions

Similar content being viewed by others

References

  1. Agrawal, R., Imielinski, T., Swami, A.: Mining association rules between sets of items in large databases. In: Proceeding of thet ACM SIGMOD International Conference on the Management of Data, pp. 207–216 (1993)

    Google Scholar 

  2. Rahman, C.M.: Text classification using the concept of association rule of data mining. In: Proceedings of International conference on Information Technology, pp. 234–241 (2003)

    Google Scholar 

  3. Agrawal, R., Srikant, R.: Fast algorithms for mining association rules. In: Proceedings of the 20th International Conference on Very Large Data Bases (VLDB), pp. 487–499 (1994)

    Google Scholar 

  4. Lopes, A.A.Ã., Pinho, R., Paulovich, F.V., Minghim, R.: Visual text mining using association rules. J. Comput. Graph. 31, 316–326 (2007)

    Google Scholar 

  5. Haralambous, Y., Lenca, P.: Text classification using association rules, dependency pruning and hyperonymization. In: DMNLP2014: Workshop on Interactions Between Data Mining and Natural Language Processing. CEUR Workshop Proceedings, Nancy, France, pp. 65–80, September 2014

    Google Scholar 

  6. Liu, B.: Integrating classification and association rule mining. In: KDD-98 Proceeding (1998)

    Google Scholar 

  7. Doddi, S.: Discovery of Association Rules in Medical Data. US National Library of Medicine National Institut of health, pp. 1–17 (2001)

    Google Scholar 

  8. Kwasnicka, H., Switalski, K.: Discovery of association rules from medical data - classical and evolutionary approaches. In: Conference Proceeding: XXI Auntum Meeting of Polish Information Processing Society, pp. 163–177 (2005)

    Google Scholar 

  9. Simovici, D.A.: Data Mining of Medical Data : Opportunities and Challenges in Mining Association Rules, no. Dm, pp. 1–25 (1968)

    Google Scholar 

  10. Hu, R.: Medical Data Mining Based on Association Rules, www.ccsenet.org: computer and information science, vol. 3, no. 4, pp. 104–108 (2010)

  11. Martin, A., Manjula, M., Venkatesan, P.: A business intelligence model to predict bankruptcy using financial domain ontology with association rule mining algorithm. IJCSI Int. J. Comput. Sci. Issues 8(3), 211–218 (2011)

    Google Scholar 

  12. Xu, Z., Zhang, R.: Financial revenue analysis based on association rules mining. Comput. Intell. Ind. Appl. 1, 220–223 (2009)

    Google Scholar 

  13. Kamruzzaman, S.M., Haider, F., Hasan, A.R.: Text classification using association rule with a hybrid concept of Naive Bayes classifier and genetic algorithm. In: Proceeding: 7th International Conference on Computer and Information Technology (ICCIT-2004), pp. 628–687 (2004)

    Google Scholar 

  14. Molodtsov, D.: Soft set theory-first result. Comput. Math. Appl. 37, 19–31 (1999)

    Google Scholar 

  15. Herawan, T., Deris, M.M.: On multi-soft sets construction in information systems. In: Huang, D.-S., Jo, K.-H., Lee, H.-H., Kang, H.-J., Bevilacqua, V. (eds.) ICIC 2009. LNCS (LNAI), vol. 5755, pp. 101–110. Springer, Heidelberg (2009). doi:10.1007/978-3-642-04020-7_12

    Chapter  Google Scholar 

  16. Qin, H., Ma, X., Herawan, T., Zain, J.M.: An adjustable approach to interval-valued intuitionistic fuzzy soft sets based decision making. In: Nguyen, N.T., Kim, C.-G., Janiak, A. (eds.) ACIIDS 2011. LNCS (LNAI), vol. 6592, pp. 80–89. Springer, Heidelberg (2011). doi:10.1007/978-3-642-20042-7_9

    Chapter  Google Scholar 

  17. Herawan, T., Deris, M.M.: Soft decision making for patients suspected influenza. In: Taniar, D., Gervasi, O., Murgante, B., Pardede, E., Apduhan, B.O. (eds.) ICCSA 2010. LNCS, vol. 6018, pp. 405–418. Springer, Heidelberg (2010). doi:10.1007/978-3-642-12179-1_34

    Chapter  Google Scholar 

  18. Maji, P.K., Biswas, R., Roy, A.R.: Soft set theory. Comput. Math. Appl. 1221, 555–562 (2003)

    Google Scholar 

  19. Das, P.K., Borgohain, R., Pradesh, A.: An application of fuzzy soft set in medical diagnosis using fuzzy arithmetic operations on fuzzy number created by neevia personal converter trial version. SIBCOLTEJO 05, 107–116 (2010)

    Google Scholar 

  20. Roy, A.R., Maji, P.K.: A fuzzy soft set theoretic approach to decision making problems. Comput. Math. Appl. 203, 412–418 (2007)

    Google Scholar 

  21. Kong, Z., Gao, L., Wang, L.: Comment on ‘A fuzzy soft set theoretic approach to decision making problems’. Comput. Math. Appl. 223(2), 540–542 (2009)

    Google Scholar 

  22. Alkhazaleh, S.: The multi-interval-valued fuzzy soft set with application in decision making. Appl. Math. 6, 1250–1262 (2015)

    Google Scholar 

  23. Çağman, N., Enginoğlu, S.: Soft matrix theory and its decision making. Comput. Math Appl. 59(10), 3308–3314 (2010)

    MathSciNet  MATH  Google Scholar 

  24. Kharal, A.: Soft approximations and uni-int decision making. Hindawi: Sci. World J. 2014, no. 1999, 2014

    Google Scholar 

  25. Feng, F., Bae, Y., Liu, X., Li, L.: Journal of Computational and Applied An adjustable approach to fuzzy soft set based decision making. Comput. Math. Appl. 234(1), 10–20 (2010)

    Google Scholar 

  26. Kong, Z., Wang, L., Wu, Z.: Journal of Computational and Applied Application of fuzzy soft set in decision making problems based on grey theory. Comput. Math. Appl. 236(6), 1521–1530 (2011)

    Google Scholar 

  27. Handaga, B., Herawan, T., Deris, M.M.: FSSC: An Algorithm for Classifying Numerical, vol. 3 (2012)

    Google Scholar 

  28. Kalaiselvi, N., Hannah Inbarani, H.: Fuzzy soft set based classification for gene expression data. IJSER 3 (2012)

    Google Scholar 

  29. Hong, T., Lee, Y.: An overview of mining fuzzy association rules. In: Bustince, H., Herrera, F., Montero, J. (eds.) Fuzzy Sets and Their Extensions: Representation, Aggregation and Models, vol. 220, pp. 397–410. Springer, Heidelberg (2008)

    Chapter  Google Scholar 

  30. Jiang, Y., Liu, H., Tang, Y., Chen, Q.: Semantic decision making using ontology-based soft sets. Math. Comput. Model 53(5–6), 1140–1149 (2011)

    Google Scholar 

  31. Çağman, N.: Fuzzy parameterized fuzzy soft set theory and its applications. Iranian J. Fuzzy Syst. 1(1), 21–35 (2010)

    Google Scholar 

  32. Glu, S.E.: Fuzzy soft set theory and its applications. Iranian J. Fuzzy Syst. 8(3), 137–147 (2011)

    Google Scholar 

  33. Zadeh, L.A.: Fuzzy sets. Inform. Control 8, 338–353 (1965)

    Google Scholar 

  34. Han, J., Pei, J., Yin, Y.: Mining frequent patterns without candidate generation. In: The 2000 ACM SIGMOD International Conference on Management of Data, 29(2), pp. 1–12 (2000)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dede Rohidin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Rohidin, D., Samsudin, N.A., Herawan, T. (2017). On Mining Association Rules of Real-Valued Items Using Fuzzy Soft Set. In: Herawan, T., Ghazali, R., Nawi, N.M., Deris, M.M. (eds) Recent Advances on Soft Computing and Data Mining. SCDM 2016. Advances in Intelligent Systems and Computing, vol 549. Springer, Cham. https://doi.org/10.1007/978-3-319-51281-5_52

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51281-5_52

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51279-2

  • Online ISBN: 978-3-319-51281-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics