Skip to main content

Wearable Optical Sensors

  • Chapter
  • First Online:
Mobile Health

Abstract

The market for wearable sensors is predicted to grow to $5.5 billion by 2025, impacting global health in unprecedented ways. Optics and photonics will play a key role in the future of these wearable technologies, enabling highly sensitive measurements of otherwise invisible information and parameters about our health and surrounding environment. Through the implementation of optical wearable technologies, such as heart rate, blood pressure, and glucose monitors, among others, individuals are becoming more empowered to generate a wealth of rich, multifaceted physiological and environmental data, making personalized medicine a reality. Furthermore, these technologies can also be implemented in hospitals, clinics, point-of-care offices, assisted living facilities or even in patients’ homes for real-time, remote patient monitoring, creating more expeditious as well as resource-efficient systems. Several key optical technologies make such sensors possible, including e.g., optical fiber textiles, colorimetric, plasmonic, and fluorometric sensors, as well as Organic Light Emitting Diode (OLED) and Organic Photo-Diode (OPD) technologies. These emerging technologies and platforms show great promise as basic sensing elements in future wearable devices and will be reviewed in this chapter along-side currently existing fully integrated wearable optical sensors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. A. Ozcan, “Mobile phones democratize and cultivate next-generation imaging, diagnostics and measurement tools,” Lab. Chip, vol. 14, no. 17, pp. 3187–3194, Jul. 2014.

    Google Scholar 

  2. S. K. Vashist, P. B. Luppa, L. Y. Yeo, A. Ozcan, and J. H. T. Luong, “Emerging Technologies for Next-Generation Point-of-Care Testing,” Trends Biotechnol., vol. 33, no. 11, pp. 692–705, Nov. 2015.

    Google Scholar 

  3. S. K. Vashist, O. Mudanyali, E. M. Schneider, R. Zengerle, and A. Ozcan, “Cellphone-based devices for bioanalytical sciences,” Anal. Bioanal. Chem., vol. 406, no. 14, pp. 3263–3277, May 2014.

    Google Scholar 

  4. MarketResearchReports.Biz, “Wearable Sensors 2015-2025: The Market For Wearable Sensors Will Reach $5.5bn by 2025: MarketResearchReports.Biz,” GlobeNewswire News Room, 18-Nov-2015. [Online]. Available: http://globenewswire.com/news-release/2015/11/18/788287/10156627/en/Wearable-Sensors-2015-2025-The-Market-For-Wearable-Sensors-Will-Reach-5-5bn-by-2025-MarketResearchReports-Biz.html. [Accessed: 19-Mar-2016].

  5. F. Paul, “What’s the Market Size for Wearables? Bigger Than You Think, says CES Expert.”

    Google Scholar 

  6. “mHealth Elderly Home Monitoring Growth Drawing New Players to the Market, Finds ABI Research,” Reuters UK. [Online]. Available: http://uk.reuters.com/article/ny-abi-research-idUKnBw096017a+100+BSW20141009. [Accessed: 02-Feb-2016].

  7. “Wearable Sensors 2015-2025: Market Forecasts, Technologies, Players: IDTechEx.” [Online]. Available: http://www.idtechex.com/research/reports/wearable-sensors-2015-2025-market-forecasts-technologies-players-000431.asp. [Accessed: 07-Mar-2016].

  8. J. Rantala, J. Hännikäinen, and J. Vanhala, “Fiber optic sensors for wearable applications,” Pers. Ubiquitous Comput., vol. 15, no. 1, pp. 85–96, Jun. 2010.

    Google Scholar 

  9. M. Rothmaier, M. P. Luong, and F. Clemens, “Textile Pressure Sensor Made of Flexible Plastic Optical Fibers,” Sensors, vol. 8, no. 7, pp. 4318–4329, Jul. 2008.

    Google Scholar 

  10. B. Selm, E. A. Gürel, M. Rothmaier, R. M. Rossi, and L. J. Scherer, “Polymeric Optical Fiber Fabrics for Illumination and Sensorial Applications in Textiles,” J. Intell. Mater. Syst. Struct., vol. 21, no. 11, pp. 1061–1071, Jul. 2010.

    Google Scholar 

  11. F. Taffoni, D. Formica, P. Saccomandi, G. D. Pino, and E. Schena, “Optical Fiber-Based MR-Compatible Sensors for Medical Applications: An Overview,” Sensors, vol. 13, no. 10, pp. 14105–14120, Oct. 2013.

    Google Scholar 

  12. H. S. Jung, P. Verwilst, W. Y. Kim, and J. S. Kim, “Fluorescent and colorimetric sensors for the detection of humidity or water content,” Chem. Soc. Rev., vol. 45, no. 5, pp. 1242–1256, 2016.

    Google Scholar 

  13. M. O’Toole and D. Diamond, “Absorbance based light emitting diode optical sensors and sensing devices,” Sensors, vol. 8, no. 4, pp. 2453–2479, Apr. 2008.

    Google Scholar 

  14. W. Zhao, M. A. Brook, and Y. Li, “Design of Gold Nanoparticle-Based Colorimetric Biosensing Assays,” ChemBioChem, vol. 9, no. 15, pp. 2363–2371, Oct. 2008.

    Google Scholar 

  15. H. N. Kim, W. X. Ren, J. S. Kim, and J. Yoon, “Fluorescent and colorimetric sensors for detection of lead, cadmium, and mercury ions,” Chem. Soc. Rev., vol. 41, no. 8, pp. 3210–3244, 2012.

    Google Scholar 

  16. M. Bauch, K. Toma, M. Toma, Q. Zhang, and J. Dostalek, “Plasmon-Enhanced Fluorescence Biosensors: a Review,” Plasmonics, vol. 9, no. 4, pp. 781–799, Dec. 2013.

    Google Scholar 

  17. L. Guo, J. A. Jackman, H.-H. Yang, P. Chen, N.-J. Cho, and D.-H. Kim, “Strategies for enhancing the sensitivity of plasmonic nanosensors,” Nano Today, vol. 10, no. 2, pp. 213–239, Apr. 2015.

    Google Scholar 

  18. S. Unser, I. Bruzas, J. He, and L. Sagle, “Localized Surface Plasmon Resonance Biosensing: Current Challenges and Approaches,” Sensors, vol. 15, no. 7, pp. 15684–15716, Jul. 2015.

    Google Scholar 

  19. J. Zhao, X. Zhang, C. R. Yonzon, A. J. Haes, and R. P. Van Duyne, “Localized surface plasmon resonance biosensors,” Nanomed., vol. 1, no. 2, pp. 219–228, Aug. 2006.

    Google Scholar 

  20. J. Wu, W. Liu, J. Ge, H. Zhang, and P. Wang, “New sensing mechanisms for design of fluorescent chemosensors emerging in recent years,” Chem. Soc. Rev., vol. 40, no. 7, pp. 3483–3495, 2011.

    Google Scholar 

  21. I. L. Medintz, H. T. Uyeda, E. R. Goldman, and H. Mattoussi, “Quantum dot bioconjugates for imaging, labelling and sensing,” Nat. Mater., vol. 4, no. 6, pp. 435–446, Jun. 2005.

    Google Scholar 

  22. L. Basabe-Desmonts, D. N. Reinhoudt, and M. Crego-Calama, “Design of fluorescent materials for chemical sensing,” Chem. Soc. Rev., vol. 36, no. 6, pp. 993–1017, 2007.

    Google Scholar 

  23. S. C. B. Gopinath, T. Lakshmipriya, Y. Chen, W.-M. Phang, and U. Hashim, “Aptamer-based ‘point-of-care testing,’” Biotechnol. Adv., vol. 34, no. 3, pp. 198–208, Jun. 2016.

    Google Scholar 

  24. S. Zeng, K.-T. Yong, I. Roy, X.-Q. Dinh, X. Yu, and F. Luan, “A Review on Functionalized Gold Nanoparticles for Biosensing Applications,” Plasmonics, vol. 6, no. 3, pp. 491–506, Sep. 2011.

    Google Scholar 

  25. E. Morales-Narváez, H. Golmohammadi, T. Naghdi, H. Yousefi, U. Kostiv, D. Horák, N. Pourreza, and A. Merkoçi, “Nanopaper as an Optical Sensing Platform,” ACS Nano, vol. 9, no. 7, pp. 7296–7305, Jul. 2015.

    Google Scholar 

  26. M. Caldara, C. Colleoni, E. Guido, V. Re, and G. Rosace, “Optical monitoring of sweat pH by a textile fabric wearable sensor based on covalently bonded litmus-3-glycidoxypropyltrimethoxysilane coating,” Sens. Actuators B Chem., vol. 222, pp. 213–220, Jan. 2016.

    Google Scholar 

  27. M. Al-Omari, K. Sel, A. Mueller, A. Mellinger, and T. Kaya, “The effect of Na+ and K+ doping on the properties of sol-gel deposited 2-hydroxy-1,4-naphthoquinone thin films,” J. Appl. Phys., vol. 113, no. 20, p. 204901, May 2013.

    Google Scholar 

  28. M. Al-omari, K. Sel, A. Mueller, J. Edwards, and T. Kaya, “Detection of relative [Na+] and [K+] levels in sweat with optical measurements,” J. Appl. Phys., vol. 115, no. 20, p. 203107, May 2014.

    Google Scholar 

  29. D. Morris, S. Coyle, Y. Wu, K. T. Lau, G. Wallace, and D. Diamond, “Bio-sensing textile based patch with integrated optical detection system for sweat monitoring,” Sens. Actuators B Chem., vol. 139, no. 1, pp. 231–236, May 2009.

    Google Scholar 

  30. C. M. Lochner, Y. Khan, A. Pierre, and A. C. Arias, “All-organic optoelectronic sensor for pulse oximetry,” Nat. Commun., vol. 5, p. 5745, Dec. 2014.

    Google Scholar 

  31. G. Williams, C. Backhouse, and H. Aziz, “Integration of Organic Light Emitting Diodes and Organic Photodetectors for Lab-on-a-Chip Bio-Detection Systems,” Electronics, vol. 3, no. 1, pp. 43–75, Feb. 2014.

    Google Scholar 

  32. H. L. Tam, W. H. Choi, and F. Zhu, “Organic Optical Sensor Based on Monolithic Integration of Organic Electronic Devices,” Electronics, vol. 4, no. 3, pp. 623–632, Sep. 2015.

    Google Scholar 

  33. L. E. Dunne, P. Walsh, B. Smyth, and B. Caulfield, “Design and Evaluation of a Wearable Optical Sensor for Monitoring Seated Spinal Posture,” in 2006 10th IEEE International Symposium on Wearable Computers, 2006, pp. 65–68.

    Google Scholar 

  34. M. A. Zawawi, S. O’Keeffe, and E. Lewis, “Plastic Optical Fibre Sensor for Spine Bending Monitoring with Power Fluctuation Compensation,” Sensors, vol. 13, no. 11, pp. 14466–14483, Oct. 2013.

    Google Scholar 

  35. M. Nishiyama and K. Watanabe, “Wearable Sensing Glove With Embedded Hetero-Core Fiber-Optic Nerves for Unconstrained Hand Motion Capture,” IEEE Trans. Instrum. Meas., vol. 58, no. 12, pp. 3995–4000, Dec. 2009.

    Google Scholar 

  36. C. Wong, Z.-Q. Zhang, B. Lo, and G.-Z. Yang, “Wearable Sensing for Solid Biomechanics: A Review,” IEEE Sens. J., vol. 15, no. 5, pp. 2747–2760, May 2015.

    Google Scholar 

  37. H. Li, H. Yang, E. Li, Z. Liu, and K. Wei, “Wearable sensors in intelligent clothing for measuring human body temperature based on optical fiber Bragg grating,” Opt. Express, vol. 20, no. 11, pp. 11740–11752, May 2012.

    Google Scholar 

  38. J. De jonckheere, M. Jeanne, A. Grillet, S. Weber, P. Chaud, R. Logier, and J. Weber, “OFSETH: Optical Fibre Embedded into technical Textile for Healthcare, an efficient way to monitor patient under magnetic resonance imaging,” in 29th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2007. EMBS 2007, 2007, pp. 3950–3953.

    Google Scholar 

  39. J. Witt, F. Narbonneau, M. Schukar, K. Krebber, J. De Jonckheere, M. Jeanne, D. Kinet, B. Paquet, A. Depré, L. T. D’Angelo, T. Thiel, and R. Logier, “Smart medical textiles with embedded optical fibre sensors for continuous monitoring of respiratory movements during MRI,” 2010, vol. 7653, p. 76533B–76533B–4.

    Google Scholar 

  40. Ł. Dziuda, F. W. Skibniewski, M. Krej, and P. M. Baran, “Fiber Bragg grating-based sensor for monitoring respiration and heart activity during magnetic resonance imaging examinations,” J. Biomed. Opt., vol. 18, no. 5, p. 57006, May 2013.

    Google Scholar 

  41. W.-J. Yoo, K.-W. Jang, J.-K. Seo, J.-Y. Heo, J.-S. Moon, J.-Y. Park, and B.-S. Lee, “Development of Respiration Sensors Using Plastic Optical Fiber for Respiratory Monitoring Inside MRI System,” J. Opt. Soc. Korea, vol. 14, no. 3, pp. 235–239, Sep. 2010.

    Google Scholar 

  42. M. Rothmaier, B. Selm, S. Spichtig, D. Haensse, and M. Wolf, “Photonic textiles for pulse oximetry,” Opt. Express, vol. 16, no. 17, pp. 12973–12986, Aug. 2008.

    Google Scholar 

  43. J. Yoon, S.-M. Lee, D. Kang, M. A. Meitl, C. A. Bower, and J. A. Rogers, “Heterogeneously Integrated Optoelectronic Devices Enabled by Micro-Transfer Printing,” Adv. Opt. Mater., vol. 3, no. 10, pp. 1313–1335, Oct. 2015.

    Google Scholar 

  44. Y. Chuo, B. Omrane, C. Landrock, J. N. Patel, and B. Kaminska, “Platform for all-polymer-based pulse-oximetry sensor,” in 2010 IEEE Sensors, 2010, pp. 155–159.

    Google Scholar 

  45. Y. Mendelson, R. J. Duckworth, and G. Comtois, “A Wearable Reflectance Pulse Oximeter for Remote Physiological Monitoring,” in 28th Annual International Conference of the IEEE Engineering in Medicine and Biology Society, 2006. EMBS ’06, 2006, pp. 912–915.

    Google Scholar 

  46. J. M. Goldman, M. T. Petterson, R. J. Kopotic, and S. J. Barker, “Masimo signal extraction pulse oximetry,” J. Clin. Monit. Comput., vol. 16, no. 7, pp. 475–483, 2000.

    Google Scholar 

  47. N. S. Trivedi, A. F. Ghouri, N. K. Shah, E. Lai, and S. J. Barker, “Effects of motion, ambient light, and hypoperfusion on pulse oximeter function,” J. Clin. Anesth., vol. 9, no. 3, pp. 179–183, May 1997.

    Google Scholar 

  48. J. Witt, F. Narbonneau, M. Schukar, K. Krebber, J. De Jonckheere, M. Jeanne, D. Kinet, B. Paquet, A. Depre, L. T. D’Angelo, T. Thiel, and R. Logier, “Medical Textiles With Embedded Fiber Optic Sensors for Monitoring of Respiratory Movement,” IEEE Sens. J., vol. 12, no. 1, pp. 246–254, Jan. 2012.

    Google Scholar 

  49. “A Look At Optical Sensors In Smart Wearables Technology | Wearable Technologies.” [Online]. Available: https://www.wearable-technologies.com/2015/08/a-look-at-optical-sensors-in-smart-wearables-technology/. [Accessed: 07-Mar-2016].

  50. “Continuous Heart Rate Monitor Technology by Mio Global,” Site name. [Online]. Available: http://www.mioglobal.com/en-us/continuous-heart-rate-technology.htm. [Accessed: 07-Mar-2016].

  51. “Masimo Corporation.” [Online]. Available: http://www.masimo.com/. [Accessed: 07-Mar-2016].

  52. “Taiwan Biophotonic Co. (tBPC).” [Online]. Available: http://www.tbpchc.com/eng/index.php. [Accessed: 07-Mar-2016].

  53. “Angel Sensor – Open Mobile Health Wearable | The future of health and well being.” [Online]. Available: http://angelsensor.com/. [Accessed: 07-Mar-2016].

  54. “Microsoft Band | Official Site.” [Online]. Available: https://www.microsoft.com/Microsoft-Band/en-us. [Accessed: 07-Mar-2016].

  55. “RHYTHM+TM | by Scosche.” [Online]. Available: http://www.scosche.com/rhythm-plus-1. [Accessed: 07-Mar-2016].

  56. “Atlas Wearables | Atlas Wristband | Fitness Tracker.” [Online]. Available: https://www.atlaswearables.com/. [Accessed: 07-Mar-2016].

  57. “Fitbit Charge HRTM Armband mit kabellosem Herzfrequenz- und Aktivitäts-Tracker.” [Online]. Available: https://www.fitbit.com/de/chargehr. [Accessed: 07-Mar-2016].

  58. “Forerunner 225 | Garmin.” [Online]. Available: https://buy.garmin.com/en-US/US/into-sports/running/forerunner-225/prod512478.html. [Accessed: 07-Mar-2016].

  59. “Monitors for Swimmers – HeartRateMonitorsUSA.com.” [Online]. Available: http://www.heartratemonitorsusa.com/collections/heart-swim. [Accessed: 07-Mar-2016].

  60. “Apple Watch - Health and Fitness - Apple.” [Online]. Available: http://www.apple.com/watch/health-and-fitness/. [Accessed: 07-Mar-2016].

  61. “Sony SmartBand 2 review: Life tracking that misses a beat - Pocket-lint.” [Online]. Available: http://www.pocket-lint.com/review/135053-sony-smartband-2-review-life-tracking-that-misses-a-beat. [Accessed: 07-Mar-2016].

  62. “SmartBand SWR10 – Wearable Technology - Sony Xperia (Global UK English).” [Online]. Available: http://www.sonymobile.com/global-en/products/smartwear/smartband-swr10/. [Accessed: 07-Mar-2016].

  63. T. Tamura, Y. Maeda, M. Sekine, and M. Yoshida, “Wearable Photoplethysmographic Sensors—Past and Present,” Electronics, vol. 3, no. 2, pp. 282–302, Apr. 2014.

    Google Scholar 

  64. J. Parak, A. Tarniceriu, P. Renevey, M. Bertschi, R. Delgado-Gonzalo, and I. Korhonen, “Evaluation of the beat-to-beat detection accuracy of PulseOn wearable optical heart rate monitor,” in 2015 37th Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), 2015, pp. 8099–8102.

    Google Scholar 

  65. “The real world wrist-based heart rate monitor test: Are they accurate enough?” [Online]. Available: http://www.wareable.com/fitness-trackers/heart-rate-monitor-accurate-comparison-wrist. [Accessed: 07-Mar-2016].

  66. D. Morris, B. Schazmann, Y. Wu, S. Coyle, S. Brady, J. Hayes, C. Slater, C. Fay, K. T. Lau, G. Wallace, and D. Diamond, “Wearable sensors for monitoring sports performance and training,” in 5th International Summer School and Symposium on Medical Devices and Biosensors, 2008. ISSS-MDBS 2008, 2008, pp. 121–124.

    Google Scholar 

  67. S. Coyle, Y. Wu, K.-T. Lau, S. Brady, G. Wallace, and D. Diamond, “Bio-sensing textiles - Wearable Chemical Biosensors for Health Monitoring,” in 4th International Workshop on Wearable and Implantable Body Sensor Networks (BSN 2007), P. D.-I. D. med S. Leonhardt, D.-I. T. Falck, and P. D. P. Mähönen, Eds. Springer Berlin Heidelberg, 2007, pp. 35–39.

    Google Scholar 

  68. S. Coyle, D. Morris, K.-T. Lau, D. Diamond, and N. Moyna, “Textile-Based Wearable Sensors for Assisting Sports Performance,” in Sixth International Workshop on Wearable and Implantable Body Sensor Networks, 2009. BSN 2009, 2009, pp. 307–311.

    Google Scholar 

  69. G. J. Mohr and H. Müller, “Tailoring colour changes of optical sensor materials by combining indicator and inert dyes and their use in sensor layers, textiles and non-wovens,” Sens. Actuators B Chem., vol. 206, pp. 788–793, Jan. 2015.

    Google Scholar 

  70. P. Anzenbacher, F. Li, and M. A. Palacios, “Toward Wearable Sensors: Fluorescent Attoreactor Mats as Optically Encoded Cross-Reactive Sensor Arrays,” Angew. Chem. Int. Ed., vol. 51, no. 10, pp. 2345–2348, Mar. 2012.

    Google Scholar 

  71. S. Feng, R. Caire, B. Cortazar, M. Turan, A. Wong, and A. Ozcan, “Immunochromatographic Diagnostic Test Analysis Using Google Glass,” ACS Nano, vol. 8, no. 3, pp. 3069–3079, Mar. 2014.

    Google Scholar 

  72. P. Shao, H. Ding, J. Wang, P. Liu, Q. Ling, J. Chen, J. Xu, S. Zhang, and R. Xu, “Designing a Wearable Navigation System for Image-Guided Cancer Resection Surgery,” Ann. Biomed. Eng., vol. 42, no. 11, pp. 2228–2237, Jul. 2014.

    Google Scholar 

  73. L. A. Mills, J. Kagaayi, G. Nakigozi, R. M. Galiwango, J. Ouma, J. P. Shott, V. Ssempijja, R. H. Gray, M. J. Wawer, D. Serwadda, T. C. Quinn, and S. J. Reynolds, “Utility of a Point-of-Care Malaria Rapid Diagnostic Test for Excluding Malaria as the Cause of Fever among HIV-Positive Adults in Rural Rakai, Uganda,” Am. J. Trop. Med. Hyg., vol. 82, no. 1, pp. 145–147, Jan. 2010.

    Google Scholar 

  74. S. Gao, S. Mondal, N. Zhu, R. Liang, S. Achilefu, and V. Gruev, “A compact NIR fluorescence imaging system with goggle display for intraoperative guidance,” in 2015 IEEE International Symposium on Circuits and Systems (ISCAS), 2015, pp. 1622–1625.

    Google Scholar 

  75. Y. Liu, R. Njuguna, T. Matthews, W. J. Akers, G. P. Sudlow, S. Mondal, R. Tang, V. Gruev, and S. Achilefu, “Near-infrared fluorescence goggle system with complementary metal–oxide–semiconductor imaging sensor and see-through display,” J. Biomed. Opt., vol. 18, no. 10, pp. 101303–101303, 2013.

    Google Scholar 

  76. S. Gioux, H. S. Choi, and J. V. Frangioni, “Image-guided surgery using invisible near-infrared light: fundamentals of clinical translation,” Mol. Imaging, vol. 9, no. 5, pp. 237–255, Oct. 2010.

    Google Scholar 

  77. C. A. Mela, C. L. Patterson, and Y. Liu, “A miniature wearable optical imaging system for guiding surgeries,” 2015, vol. 9311, p. 93110Z–93110Z–8.

    Google Scholar 

  78. J. V. Frangioni, “New Technologies for Human Cancer Imaging,” J. Clin. Oncol., vol. 26, no. 24, pp. 4012–4021, Aug. 2008.

    Google Scholar 

  79. B. M. Quandt, L. J. Scherer, L. F. Boesel, M. Wolf, G.-L. Bona, and R. M. Rossi, “Body-monitoring and health supervision by means of optical fiber-based sensing systems in medical textiles,” Adv. Healthc. Mater., vol. 4, no. 3, pp. 330–355, Feb. 2015.

    Google Scholar 

  80. A. T. Augousti, F.-X. Maletras, and J. Mason, “The use of a figure-of-eight coil for fibre optic respiratory plethysmography: Geometrical analysis and experimental characterisation,” Opt. Fiber Technol., vol. 11, no. 4, pp. 346–360, Oct. 2005.

    Google Scholar 

  81. A. T. Augousti, F.-X. Maletras, and J. Mason, “Improved fibre optic respiratory monitoring using a figure-of-eight coil,” Physiol. Meas., vol. 26, no. 5, pp. 585–590, Oct. 2005.

    Google Scholar 

  82. H. Y. Liu, H. B. Liu, and G. D. Peng, “Tensile strain characterization of polymer optical fibre Bragg gratings,” Opt. Commun., vol. 251, no. 1–3, pp. 37–43, Jul. 2005.

    Google Scholar 

  83. M. Nishyama, M. Miyamoto, and K. Watanabe, “Respiration and body movement analysis during sleep in bed using hetero-core fiber optic pressure sensors without constraint to human activity,” J. Biomed. Opt., vol. 16, no. 1, pp. 17002-17002–7, 2011.

    Google Scholar 

  84. H. S. Efendioglu, A. K. Sahin, T. Yildirim, and K. Fidanboylu, “Design of hetero-core smart fiber optic macrobend sensors,” in 2011 7th International Conference on Electrical and Electronics Engineering (ELECO), 2011, p. II-372-II-375.

    Google Scholar 

  85. M. Krehel, R. M. Rossi, G.-L. Bona, and L. J. Scherer, “Characterization of Flexible Copolymer Optical Fibers for Force Sensing Applications,” Sensors, vol. 13, no. 9, pp. 11956–11968, Sep. 2013.

    Google Scholar 

  86. A. Ozcan, M. J. F. Digonnet, L. Lablonde, D. Pureur, and G. S. Kino, “A New Iterative Technique to Characterize and Design Transmission Fiber Bragg Gratings,” J. Light. Technol., vol. 24, no. 4, p. 1913, Apr. 2006.

    Google Scholar 

  87. K. O. Hill and G. Meltz, “Fiber Bragg grating technology fundamentals and overview,” J. Light. Technol., vol. 15, no. 8, pp. 1263–1276, Aug. 1997.

    Google Scholar 

  88. A. Grillet, D. Kinet, J. Witt, M. Schukar, K. Krebber, F. Pirotte, and A. Depre, “Optical Fiber Sensors Embedded Into Medical Textiles for Healthcare Monitoring,” IEEE Sens. J., vol. 8, no. 7, pp. 1215–1222, Jul. 2008.

    Google Scholar 

  89. Q. Sun, J. Wo, H. Wang, and D. Liu, “Ultra-short DBR fiber laser based sensor for arterial pulse monitoring,” 2014, vol. 9157, p. 91572K–91572K–4.

    Google Scholar 

  90. J. Yao and S. Warren, “A Short Study to Assess the Potential of Independent Component Analysis for Motion Artifact Separation in Wearable Pulse Oximeter Signals,” in Engineering in Medicine and Biology Society, 2005. IEEE-EMBS 2005. 27th Annual International Conference of the, 2005, pp. 3585–3588.

    Google Scholar 

  91. M. J. Patterson, S. D. Galloway, and M. A. Nimmo, “Variations in regional sweat composition in normal human males,” Exp. Physiol., vol. 85, no. 6, pp. 869–875, Nov. 2000.

    Google Scholar 

  92. W. Gao, S. Emaminejad, H. Y. Y. Nyein, S. Challa, K. Chen, A. Peck, H. M. Fahad, H. Ota, H. Shiraki, D. Kiriya, D.-H. Lien, G. A. Brooks, R. W. Davis, and A. Javey, “Fully integrated wearable sensor arrays for multiplexed in situ perspiration analysis,” Nature, vol. 529, no. 7587, pp. 509–514, Jan. 2016.

    Google Scholar 

  93. D. Son, J. Lee, S. Qiao, R. Ghaffari, J. Kim, J. E. Lee, C. Song, S. J. Kim, D. J. Lee, S. W. Jun, S. Yang, M. Park, J. Shin, K. Do, M. Lee, K. Kang, C. S. Hwang, N. Lu, T. Hyeon, and D.-H. Kim, “Multifunctional wearable devices for diagnosis and therapy of movement disorders,” Nat. Nanotechnol., vol. 9, no. 5, pp. 397–404, May 2014.

    Google Scholar 

  94. D.-S. Lee, B. G. Jeon, C. Ihm, J.-K. Park, and M. Y. Jung, “A simple and smart telemedicine device for developing regions: a pocket-sized colorimetric reader,” Lab. Chip, vol. 11, no. 1, pp. 120–126, Dec. 2010.

    Google Scholar 

  95. D. Shir, Z. Ballard, and A. Ozcan, “Flexible Plasmonic Sensors,” IEEE J. Sel. Top. Quantum Electron., vol. PP, no. 99, pp. 1–1, 2015.

    Google Scholar 

  96. S. Krishnamoorthy, “Nanostructured sensors for biomedical applications — a current perspective,” Curr. Opin. Biotechnol., vol. 34, pp. 118–124, Aug. 2015.

    Google Scholar 

  97. C. A. Barrios, V. Canalejas-Tejero, S. Herranz, J. Urraca, M. C. Moreno-Bondi, M. Avella-Oliver, Á. Maquieira, and R. Puchades, “Aluminum Nanoholes for Optical Biosensing,” Biosensors, vol. 5, no. 3, pp. 417–431, Jul. 2015.

    Google Scholar 

  98. L. Gao, Y. Zhang, H. Zhang, S. Doshay, X. Xie, H. Luo, D. Shah, Y. Shi, S. Xu, H. Fang, J. A. Fan, P. Nordlander, Y. Huang, and J. A. Rogers, “Optics and Nonlinear Buckling Mechanics in Large-Area, Highly Stretchable Arrays of Plasmonic Nanostructures,” ACS Nano, vol. 9, no. 6, pp. 5968–5975, Jun. 2015.

    Google Scholar 

  99. F. Inci, C. Filippini, M. Baday, M. O. Ozen, S. Calamak, N. G. Durmus, S. Wang, E. Hanhauser, K. S. Hobbs, F. Juillard, P. P. Kuang, M. L. Vetter, M. Carocci, H. S. Yamamoto, Y. Takagi, U. H. Yildiz, D. Akin, D. R. Wesemann, A. Singhal, P. L. Yang, M. L. Nibert, R. N. Fichorova, D. T.-Y. Lau, T. J. Henrich, K. M. Kaye, S. C. Schachter, D. R. Kuritzkes, L. M. Steinmetz, S. S. Gambhir, R. W. Davis, and U. Demirci, “Multitarget, quantitative nanoplasmonic electrical field-enhanced resonating device (NE2RD) for diagnostics,” Proc. Natl. Acad. Sci. U. S. A., vol. 112, no. 32, pp. E4354-4363, Aug. 2015.

    Google Scholar 

  100. L. Prodi, M. Montalti, N. Zaccheroni, F. Dallavalle, G. Folesani, M. Lanfranchi, R. Corradini, S. Pagliari, and R. Marchelli, “Dansylated Polyamines as Fluorescent Sensors for Metal Ions: Photophysical Properties and Stability of Copper(II) Complexes in Solution,” Helv. Chim. Acta, vol. 84, no. 3, pp. 690–706, Mar. 2001.

    Google Scholar 

  101. R.-Q. Ma, R. Hewitt, K. Rajan, J. Silvernail, K. Urbanik, M. Hack, and J. J. Brown, “Flexible active-matrix OLED displays: Challenges and progress,” J. Soc. Inf. Disp., vol. 16, no. 1, pp. 169–175, Jan. 2008.

    Google Scholar 

  102. J. Smith, E. Bawolek, Y. K. Lee, B. O’Brien, M. Mans, E. Howard, M. Strnad, J. B. Christen, and M. Goryll, “Application of flexible flat panel display technology to wearable biomedical devices,” Electron. Lett., vol. 51, no. 17, pp. 1312–1313, Aug. 2015.

    Google Scholar 

  103. J. He, R. G. Nuzzo, and J. A. Rogers, “Inorganic Materials and Assembly Techniques for Flexible and Stretchable Electronics,” Proc. IEEE, vol. 103, no. 4, pp. 619–632, Apr. 2015.

    Google Scholar 

  104. X. Sheng, C. Robert, S. Wang, G. Pakeltis, B. Corbett, and J. A. Rogers, “Transfer printing of fully formed thin-film microscale GaAs lasers on silicon with a thermally conductive interface material,” Laser Photonics Rev., vol. 9, no. 4, pp. L17–L22, Jul. 2015.

    Google Scholar 

  105. S. Xu, Y. Zhang, L. Jia, K. E. Mathewson, K.-I. Jang, J. Kim, H. Fu, X. Huang, P. Chava, R. Wang, S. Bhole, L. Wang, Y. J. Na, Y. Guan, M. Flavin, Z. Han, Y. Huang, and J. A. Rogers, “Soft Microfluidic Assemblies of Sensors, Circuits, and Radios for the Skin,” Science, vol. 344, no. 6179, pp. 70–74, Apr. 2014.

    Google Scholar 

  106. J.-S. Park, H. Chae, H. K. Chung, and S. I. Lee, “Thin film encapsulation for flexible AM-OLED: a review,” Semicond. Sci. Technol., vol. 26, no. 3, p. 34001, 2011.

    Google Scholar 

  107. J. Ahmad, K. Bazaka, L. J. Anderson, R. D. White, and M. V. Jacob, “Materials and methods for encapsulation of OPV: A review,” Renew. Sustain. Energy Rev., vol. 27, pp. 104–117, Nov. 2013.

    Google Scholar 

  108. D. Wall, W. Ray, R. D. Pathak, and S. M. Lin, “A Google Glass Application to Support Shoppers With Dietary Management of Diabetes,” J. Diabetes Sci. Technol., vol. 8, no. 6, pp. 1245–1246, Nov. 2014.

    Google Scholar 

  109. N. Ozana, N. Arbel, Y. Beiderman, V. Mico, M. Sanz, J. Garcia, A. Anand, B. Javidi, Y. Epstein, and Z. Zalevsky, “Improved noncontact optical sensor for detection of glucose concentration and indication of dehydration level,” Biomed. Opt. Express, vol. 5, no. 6, pp. 1926–1940, 2014.

    Google Scholar 

  110. “TZOA Wearable Enviro-Tracker.” [Online]. Available: http://www.tzoa.com/#homepage. [Accessed: 07-Mar-2016].

  111. “TZOA UPDATE AUGUST 2015.”

    Google Scholar 

  112. “Tzoa’s Wearable Enviro-Tracker Wants To Clear The Air - ReadWrite.” [Online]. Available: http://readwrite.com/2015/05/20/tzoa-wearable-air-quality-sensor-crowdfunding-indiegogo. [Accessed: 07-Mar-2016].

  113. “L’Oréal Debuts First-Ever Stretchable Electronic UV Monitor at the 2016 Consumer Electronics Show-L’Oréal Group.” [Online]. Available: http://www.loreal.com/media/press-releases/2016/jan/loreal-debuts-first-ever-stretchable-electronic-uv-monitor. [Accessed: 07-Mar-2016].

  114. D. Roggen, S. Magnenat, M. Waibel, and G. Tröster, “Wearable Computing,” IEEE Robot. Autom. Mag., vol. 18, no. 2, pp. 83–95, Jun. 2011.

    Google Scholar 

  115. D. C. Klonoff, “New Wearable Computers Move Ahead: Google Glass and Smart Wigs,” J. Diabetes Sci. Technol., vol. 8, no. 1, pp. 3–5, Jan. 2014.

    Google Scholar 

  116. D. Farina, E. Cianca, N. Marchetti, and S. Frattasi, “Special issue: Wearable computing and communication for e-Health,” Med. Biol. Eng. Comput., vol. 50, no. 11, pp. 1117–1118, Nov. 2012.

    Google Scholar 

  117. E. McLeod, Q. Wei, and A. Ozcan, “Democratization of Nanoscale Imaging and Sensing Tools Using Photonics,” Anal. Chem., vol. 87, no. 13, pp. 6434–6445, Jul. 2015.

    Google Scholar 

  118. B. Cortazar, H. C. Koydemir, D. Tseng, S. Feng, and A. Ozcan, “Quantification of plant chlorophyll content using Google Glass,” Lab. Chip, vol. 15, no. 7, pp. 1708–1716, Mar. 2015.

    Google Scholar 

  119. C. Wongsrichanalai, M. J. Barcus, S. Muth, A. Sutamihardja, and W. H. Wernsdorfer, “A Review of Malaria Diagnostic Tools: Microscopy and Rapid Diagnostic Test (RDT),” Am. J. Trop. Med. Hyg., vol. 77, no. 6 Suppl, pp. 119–127, Dec. 2007.

    Google Scholar 

  120. I. N. Okeke, R. W. Peeling, H. Goossens, R. Auckenthaler, S. S. Olmsted, J.-F. de Lavison, B. L. Zimmer, M. D. Perkins, and K. Nordqvist, “Diagnostics as essential tools for containing antibacterial resistance,” Drug Resist. Updat. Rev. Comment. Antimicrob. Anticancer Chemother., vol. 14, no. 2, pp. 95–106, Apr. 2011.

    Google Scholar 

  121. Q. Wei, R. Nagi, K. Sadeghi, S. Feng, E. Yan, S. J. Ki, R. Caire, D. Tseng, and A. Ozcan, “Detection and Spatial Mapping of Mercury Contamination in Water Samples Using a Smart-Phone,” ACS Nano, vol. 8, no. 2, pp. 1121–1129, Feb. 2014.

    Google Scholar 

  122. M. R. Bani, M. P. Lux, K. Heusinger, E. Wenkel, A. Magener, R. Schulz-Wendtland, M. W. Beckmann, and P. A. Fasching, “Factors correlating with reexcision after breast-conserving therapy,” Eur. J. Surg. Oncol. EJSO, vol. 35, no. 1, pp. 32–37, Jan. 2009.

    Google Scholar 

  123. N. D. Lane, S. Bhattacharya, P. Georgiev, C. Forlivesi, and F. Kawsar, “An Early Resource Characterization of Deep Learning on Wearables, Smartphones and Internet-of-Things Devices,” in Proceedings of the 2015 International Workshop on Internet of Things Towards Applications, New York, NY, USA, 2015, pp. 7–12.

    Google Scholar 

  124. H. Profita, N. Farrow, and N. Correll, “Flutter: An Exploration of an Assistive Garment Using Distributed Sensing, Computation and Actuation,” in Proceedings of the Ninth International Conference on Tangible, Embedded, and Embodied Interaction, New York, NY, USA, 2015, pp. 359–362.

    Google Scholar 

  125. H. Banaee, M. U. Ahmed, and A. Loutfi, “Data Mining for Wearable Sensors in Health Monitoring Systems: A Review of Recent Trends and Challenges,” Sensors, vol. 13, no. 12, pp. 17472–17500, Dec. 2013.

    Google Scholar 

  126. M. Swan, “Sensor Mania! The Internet of Things, Wearable Computing, Objective Metrics, and the Quantified Self 2.0,” J. Sens. Actuator Netw., vol. 1, no. 3, pp. 217–253, Nov. 2012.

    Google Scholar 

  127. W. J. Bock, E. Porada, M. Beaulieu, and T. A. Eftimov, “Automatic calibration of a fiber-optic strain sensor using a self-learning system,” IEEE Trans. Instrum. Meas., vol. 43, no. 2, pp. 341–346, Apr. 1994.

    Google Scholar 

  128. H. S. Efendioglu, T. Yildirim, and K. Fidanboylu, “Prediction of Force Measurements of a Microbend Sensor Based on an Artificial Neural Network,” Sensors, vol. 9, no. 9, pp. 7167–7176, Sep. 2009.

    Google Scholar 

  129. Ö. G. Saracoglu, “An Artificial Neural Network Approach for the Prediction of Absorption Measurements of an Evanescent Field Fiber Sensor,” Sensors, vol. 8, no. 3, pp. 1585–1594, Mar. 2008.

    Google Scholar 

  130. R. Yousefi, M. Nourani, S. Ostadabbas, and I. Panahi, “A Motion-Tolerant Adaptive Algorithm for Wearable Photoplethysmographic Biosensors,” IEEE J. Biomed. Health Inform., vol. 18, no. 2, pp. 670–681, Mar. 2014.

    Google Scholar 

  131. S. I. Park, D. S. Brenner, G. Shin, C. D. Morgan, B. A. Copits, H. U. Chung, M. Y. Pullen, K. N. Noh, S. Davidson, S. J. Oh, J. Yoon, K.-I. Jang, V. K. Samineni, M. Norman, J. G. Grajales-Reyes, S. K. Vogt, S. S. Sundaram, K. M. Wilson, J. S. Ha, R. Xu, T. Pan, T. Kim, Y. Huang, M. C. Montana, J. P. Golden, M. R. Bruchas, R. W. Gereau Iv, and J. A. Rogers, “Soft, stretchable, fully implantable miniaturized optoelectronic systems for wireless optogenetics,” Nat. Biotechnol., vol. 33, no. 12, pp. 1280–1286, Dec. 2015.

    Google Scholar 

Download references

Acknowledgments

The Ozcan Research Group at UCLA gratefully acknowledges the support of the Presidential Early Career Award for Scientists and Engineers (PECASE), the Army Research Office (ARO; W911NF-13-1-0419 and W911NF-13-1-0197), the ARO Life Sciences Division, the National Science Foundation (NSF) CBET Division Biophotonics Program, the NSF Emerging Frontiers in Research and Innovation (EFRI) Award, the NSF EAGER Award, NSF INSPIRE Award, NSF Partnerships for Innovation: Building Innovation Capacity (PFI:BIC) Program, Office of Naval Research (ONR), King Abdullah University of Science and Technology (KAUST), and the Howard Hughes Medical Institute (HHMI). Zachary S. Ballard also acknowledges the support from the NSF Graduate Research Fellowship Program. This work is based upon research performed in a renovated laboratory renovated by the National Science Foundation under Grant No. 0963183, which is an award funded under the American Recovery and Reinvestment Act of 2009 (ARRA).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aydogan Ozcan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Ballard, Z.S., Ozcan, A. (2017). Wearable Optical Sensors. In: Rehg, J., Murphy, S., Kumar, S. (eds) Mobile Health. Springer, Cham. https://doi.org/10.1007/978-3-319-51394-2_16

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51394-2_16

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51393-5

  • Online ISBN: 978-3-319-51394-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics