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Abstract. We consider the problem of adaptive targeting for real-time
bidding for internet advertisement. This problem involves making fast
decisions on whether to show a given ad to a particular user. For de-
mand partners, these decisions are based on information extracted from
big data sets containing records of previous impressions, clicks and sub-
sequent purchases. We discuss several criteria which allow us to assess
the significance of different factors on probabilities of clicks and conver-
sions. We then devise simple strategies that are based on the use of the
most influential factors and compare their performance with strategies
that are much more computationally demanding. To make the numeri-
cal comparison, we use real data collected by Crimtan in the process of
running several recent ad campaigns.

Keywords: Online advertisement, Real-time bidding, Adaptive target-
ing, Big data, Conversion rate

1 Introduction

During the last decade online advertisement became a significant part of the total
advertisement market. Many companies including Google, Facebook and online
news portals provide possibilities for online advertisement of their webpages
to generate revenue. With high penetration of internet, online advertisement
has gained attraction from marketers due to its specific features like scalability,
measurability, ability to target individual users and relatively low cost per ad
shown.

There are three main forms of online advertisement: search advertising (oc-
currs when a user conducts an online search), classified advertising (ads appear
on websites of particular types, e.g. jobs and dating websites), and display ad-
vertising (banner ads on websites which are not search engines). During the
last five years search and display advertising have moved from direct relation-
ship between seller and buyer of ads to an advanced and flexible auction-based
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model [12]. In this model, there is a seller of an ad space and several buyers -
technology companies, who specialize in efficient ad delivery. Typically, demand
partners pay per view, and prices are defined as cost per thousand ad exposures.

Display advertisement via actions has empowered the growth of the so-called
programmatic buying, that is buying when decisions are made by machines based
on algorithms and big data sets, rather than people. Demand partners typically
collect databases with logs of all previous requests from auctions, impressions,
clicks, conversions and users who visited a website which is currently advertised.
These logs usually contain an anonimized user id, a browser name, an OS name, a
geographical information derived from the IP address and a webpage link where
an auction is run. Merging these datasets with third party data sources provides
possibilities for contextual, geographical and behavioural targeting.

We consider the problem of online advertisement via auctions holding by
independent ad exchanges from the position of a demand partner which wants to
optimise the conversion rate. The demand partner has to decide how reasonable
is it showing an ad in regard to a request from an auction and then possibly
suggest a bid.

Demand partners put a special code on an advertised site to record users who
made conversions. After few weeks of monitoring and running an ad campaign,
demand partners collect a database with several thousands of conversions with
just few records from this database occurring due to impressions. Also demand
partners collect another database with requests on possibility to show an ad.
By comparing these databases, demand partners have to develop procedures for
estimating the conversion rate for new requests and subsequent bidding. Since
demand partners should suggest a bid in few milliseconds, these procedures must
be fast.

The demand partner has to solve the problem of maximizing either the click
through rate (CTR) or the conversion rate by targeting a set of requests under
several constraints: (a) budget (total amount of money available for advertising),
(b) number of impressions Ntotal (the total amount of ad exposures), and (c)
time (any ad campaign is restricted to a certain time period).

The problem of adaptive targeting for ad campaigns was recently addressed
in quite a few papers, see e.g. [4,5,7,13]. In 2014 two contests were organized in
Kaggle portal, see [14] and [15] on algorithms for predicting the CTR using a
dataset with subsampled non-click records so that the CTR for the dataset is
about 20% while for a typical advertising campaign the CTR is about 0.4% or
less. The algorithms, which were proposed are publicly available and give ap-
proximately the same performance with respect to the logarithmic loss criterion

logloss = −1/N

N∑

i=1

(yi log(pi) + (1− yi) log(1− pi)), (1)

where N is the size of the data set, pi is the predicted probability of click for
the i-th request, and yi = 1 if the i-th leads to click and yi = 0 otherwise.
This criterion, however, does not look very sensible when the probabilities pi
are very small as it pays equal weights to type I and type II error probabilities.
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Moreover, the criterion (1) and other loss functions are not much often used in the
industry as the advertisers are not interested in approximating click (conversion)
probabilities at the entire range of admissible values of these probabilities; they
are interested in making a decision (whether to show an ad) and hence they are
only interested in making a correct decision whether some pi is smaller or larger
than some threshold value p∗ (so that if pi ≥ p∗ then the demand partner will
propose a bid for the i-the user). The threshold value p∗ should be small enough
to ensure that we will get the total number of impressions in time. On the other
hand, we cannot let p∗ to be too small as otherwise the final CTR (or conversion
rate) will be too small. Rather than reporting values of the logloss or other
criteria for different strategies, we present graphs which display the conversion
rate as a function of the size of the sample with largest predicted values of the
conversion probabilities. These types of figures are very common in the industry
for assessing performances of different strategies.

In previous two papers [8,9] we have made a critical analysis of several pro-
cedures for on-line advertisement, provided a unified point of view on these pro-
cedures and have had a close look at the so-called ‘look-alike’ strategies. In the
present paper we study relative influence of different factors on the conversion
rate and hence develop simple procedures which are very computationally light
but achieve the same accuracy as computationally demanding algorithms like
Gradient Boosting Machines (see Section 2.5) or Field-Aware Factorization Ma-
chines (FFM), see e.g. [10]. Note that the number of parameters in the simplest
FFM models is the sum of all factor levels plus perhaps interactions between
factor levels. It counts to millions and if at least some interactions are taken into
account then the count takes to much larger numbers.

Our models proposed in Section 2.4 are entirely different, they have a rel-
atively small number of parameters. In particular, we propose a sparse model
where only a few most significant factors are used for predicting the conversion
rate.

2 Relative influence of factors

2.1 Notation and statement of the problem

Databases of logs contain records with many factors. Therefore, it is important
to find the relative influence of all available factors and then build a prediction
model using only the most important factors (and perhaps their interactions) in
order to keep the computational time of evaluating the model for a new request
small. Let us start with a formal statement of the problem.

Suppose that we have a database with records x1, . . . , xN and a vector
y1, . . . , yN of binary outputs such that yj = 1 if the j-th record has led to a
conversion and yj = 0 otherwise.

Each record xj is described by m factors, xj = (xj,1, . . . , xj,m). The list of
factors typically includes a browser name, an OS name, a device type, a country,
a region, a visited webpage and behaviour categories. Let p(x) be an idealistic
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conversation rate for a request x; that is, p(x) = Pr{y(x) = 1}. The knowledge
of function p(·) would help us to construct an effective strategy of adaptive
targeting for online advertisement. In practice, the function p(·) is unknown and
even its existence is a mathematical model.

Suppose that the i-th factor has Li levels li,1, . . . , li,Li
. A relationship between

the i-th factor and the binary output can be described by the contingency table.
Specifically, we define

ni,k,s = #{j : yj = s, xj,i = li,k}

as the number of records for which the output yj equals s and the value xj,i

takes the value at the k-th level for the i-th factor. Here s ∈ {0, 1}, i = 1, . . . ,m
and k = 1, . . . , Li; note that k = ki depends on i.

For fixed i, the frequency table (pi,k,s)
s=0,1
k=1,...,Li

with

pi,k,s = ni,k,s/N

provides the joint empirical distribution for the pair of the i-th factor and the
binary output, where N is the total number of records.

The row-sums for these frequency tables are pi,k,∗ = pi,k,0 + pi,k,1, so that
the vector with frequencies pi,k,∗, k = 1, . . . , Li gives the empirical distribution
of levels for the i-th factor.

The column-sums for the frequency tables are

pi,∗,s = pi,1,s + . . .+ pi,Li,s .

These values clearly do not depend on i so that

P =

∑N

j=1 yj

N
= pi,∗,1 and pi,∗,0 = 1− P

for all i where P is the overall frequency of 1 for the binary output; that is,
the overall conversion rate for the database. Note, however, that P is not the
conversion rate of an ad campaign because the database contains records of
non-converted requests and converters which are not related to the active ad
campaign (the converters recorded directly by the demand partners who put a
special code on an advertised site to record users who made conversions).

To identify how the i-th factor affects the conversion rate p(x), we consider
several statistics which measure the dispersion or mutual information.

2.2 Relative influence via dispersion

To find the relative influence of the i-th factor on the conversion rate in the sense
of the dispersion of the conversion rate for different levels of the i-th factor, we
propose the statistic defined by

I
(D)
i =

Li∑

k=1

pi,k,∗(qi,k − P )2
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where
qi,k =

ni,k,1

ni,k,0 + ni,k,1
=

pi,k,1
pi,k,∗

is the conversion rate for the records with k-th level for the i-th factor.

2.3 Relative influence via mutual information

Mutual information is an information-theoretic measure of divergence between
the joint distribution and the product of two marginal distributions, see the
classical book [2]. If two random variables are independent, then the mutual
information is zero. We apply mutual information to measure a degree of depen-
dence between the i-th factor and the binary output.

To find the relative influence of the i-th factor in the sense the mutual infor-
mation based on the Shannon entropy, we consider the statistic defined by

I
(Sh)
i =

Li∑

k=1

1∑

s=0

pi,k,s log2
pi,k,s

pi,k,∗ pi,∗,s
.

To find the relative influence of the i-th factor in the sense the mutual infor-
mation based on the Renyi entropy of order α, we consider the statistic defined
by

I
(Re,α)
i = log2

Li∑

k=1

1∑

s=0

pαi,k,s

pα−1
i,k,∗ p

α−1
i,∗,s

.

It is known that mutual information is not robust in the case in which
there are levels with rare occurrence, see [1]. To regularize the above statistics

I
(D)
i , I

(Sh)
i and I

(Re,α)
i , we perform a pre-processing of the database by replacing

rare levels with ni,k,∗ ≤ 9 by a dummy level.

Note that the Renyi mutual information I
(Re,α)
i was used for factor selection

in the literature, see e.g. [6]; however, the range of applications was entirely

different. The Shannon mutual information I
(Sh)
i is a standard in many areas.

2.4 MI-based model for estimating the conversion rate

Suppose that we are given a new request X = (X1, . . . , Xm) and we want to
estimate the conversion rate p(X). As an estimator of p(X), we propose

p̂(X) =

∑m

i=1 Iiqi,ki∑m

i=1 Ii
(2)

where ki is such that Xi = li,ki
and Ii is a relative influence of the i-th factor.

Furthermore, if we want to use a sparse predictive model then we can set the
values of Ii such that Ii ≤ ǫ to zero, for some small ǫ > 0.

The expression (2) resembles the form of the multi-factor multi-level ANOVA
model. However, the model (2) uses totally different methods of estimating pa-
rameters than standard ANOVA regression.
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The main advantage of the proposed model (2) is its simplicity and time effi-
ciency. As we demonstrate below, precision of this model is basically identical to
the precision of much more complicated models based on the use of the Gradient
Boosting Machines (GBM).

2.5 Gradient Boosting Machines

GBM is a method of sequential approximation of the desired function p(x) by a
function of the form

p(k)(x) =

k∑

i=1

αih(x, θi),

where at iteration k the coefficient αk and the vector θk are estimated through
minimizing some loss criterion L(·, ·); see e.g. [3,11]; the values of αi and θi for
i < k being kept from previous iterations. Since many factors are categorical, we
consider the special case of the so-called tree-based GBM, where the function
h(x, θ) is called a regression tree and has the form

h(x, θ) =
J∑

j=1

bj1Rj
(x)

where R1, . . . , RJ are disjoint sets whose union is the whole space and these sets
correspond to J terminal nodes of the tree. The indicator function 1R(x) equals
0 if x belongs to a set R and 0 otherwise. The vector θ for the regression tree
h(x, θ) is a collection of b1, . . . , bJ and R1, . . . , RJ , which parameterize the tree.
Note that levels of categorical variables are encoded by integer numbers.

To build the GBM model for a real data, we take the gbm package in R. We
use the function gbm which constructs the generalized boosted regression model
has the following parameters, see [11]:

– (i) n.trees, the total number of trees in the model,

– (ii) interaction.depth, the maximal depth of factor interactions,

– (iii) n.minobsinnode, the minimal number of records in the terminal nodes
of trees,

– (iv) bag.fraction, the fraction of records from the training set randomly
selected to construct the next tree,

– (v) shrinkage, the learning rate ν which is used to define αi = νγi, where

γi = argmin
γ

N∑

j=1

L(yj , p
(i−1)(xj) + γh(xj , θi)).

The values used in industry are typically as follows n.minobsinnode=100,
n.trees=500, shrinkage=0.1, interaction.depth=5, bag.fraction=0.5
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3 Numerical results

In the present section we analyze several ad campaigns which were executed by
Crimtan.

To investigate the performance of different strategies for the database of
requests for an ad campaign, we split the database of records into 2 sets: the
training set of past records with dates until a certain time T and the test set
of future records with dates from the time T . The training set contains 50,000
records but the test sets are much larger (their sizes are in the range of 1 million).
We now compare GBM and the model based on the use of (2) by comparing
the conversion rate for the samples of most favorable requests with the highest
chances of conversion.

To form the sample of most favorable requests for the GBM approach, we
construct the GBM model using the training set and then apply this model to
predict the probability of conversion for each request from the test set. Now we
can sort the predicted probabilities and create samples of requests with highest
predicted probabilities of conversion.

In Figure 1 we can see that all four considered versions of the relative in-
fluence of factors give somewhat similar orderings. We note that the factor 36
provides significant influence in some ad campaigns and small influence in others.
However, factors 33 and 40 have large influence in all four ad campaigns.
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Fig. 1. Relative influence of factors for 4 ad campaigns.

In Figure 2 we can see that the performance of the MI-based model is the
same for the four considered versions of the relative influence of factors both for
the training set and the test set for a chosen ad campaign. Since the performance
for the test set is similar to the performance for the training set, we can conclude
that there is no over-fitting in the MI-based model. This is not the case for the
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GBM, see Figure 3. In particular, if the depth level is high then the GBM
performance for the training set is visibly better than its performance for the
test set.
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Fig. 2. The performance of the MI-based model with 4 forms of the relative influences
of factors for the training set (left) and the test set (right) for an ad campaign. The
y-scale is the conversion rate of samples of largest predicted values for various sample
sizes.

In Figure 3 we can also see that the performance of the GBM model does
not depend on the interaction depth, when the number of trees is 500 and the
bag fraction is 0.5. Comparing Figures 2 and 3 we can see that the performance
of the simple MI-based model is very close to the performance of the complex,
computationally demanding GBM model.
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Fig. 3. The performance of the GBM model with different interaction depth for the
training set (left) and the test set (right) for an ad campaign, with the number of trees
500.

In Figure 4 we can see that the performance of the GBM model with larger
number of trees on the training set is marginally better than with smaller number
of trees. However, the performance of the GBM model with different number of
trees for the test set is virtually the same.

In Figures 5 and 6 we compare the performance of the proposed MI-based

model with I
(D)
i to the performance of the GBM model with 500 trees and the

interaction depth 5 (which is a very time-consuming algorithm). For both ad
campaigns, GBM performance on the training sets is slightly better than the
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Fig. 4. The performance of the GBM model with different number of trees for the
training set (left) and the test set (right) for an ad campaign, with the interaction
depth 2.

performance of the proposed algorithm. This can be explained by the fact that
GBM has thousands times more degrees of freedom than our model and, by the
definition of the method, GBM tries to fit the data as best as it can.

GBM performances on the test sets are slightly worse than that on the train-
ing sets and they are very similar to the performance of the proposed algorithm.
A slight advantage of GBM over the MI-based method for the records X that
have high values of probabilities p(X) is not important for the following two
reasons: (a) high probabilities of p(X) can only be observed for the supplemen-
tary part of the database containing the records which are not a part of the ad
campaign, and (b) as mentioned above, we are interested in a good estimation
of p(X) such that p(X) ≃ p∗, where p∗ is the threshold value, which is quite
small.
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Fig. 5. The performance of the MI-based model with I
(D)
i

and the GBM model with
500 trees and the interaction depth 5 for the training set (left) and the test set (right)
for an ad campaign.

We should notice that the MI-based model p̂(X) is not good for estimating
the conversion rate p(X) in view of some bias. We can only use the MI-based
models for ranking the requests using predictive values and choosing the most
promising ones. If one wishes to enhance the MI-based model and obtain a
good estimator of p(X), then we recommend to remove non-influential factors
by computing the mutual information and build a logistic model using the most
influential factors and possibly their interactions.
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Fig. 6. The performance of the MI-based model with I
(D)
i

and the GBM model with
500 trees and the interaction depth 5 for the training set (left) and the test set (right)
for another ad campaign.

Finally we would like to highlight the time efficiency of computations for
the proposed model. Construction of the MI-based model and evaluating of the
MI-based model for new requests is at least 10 times faster comparing with the
GBM model. In fact, the MI-based model can be used in the regime of real-time
learning; that is, the contingency tables and the predictive model can be easily
updated as bunches of new requests arrived.
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