Skip to main content

Driver Maneuvers Inference Through Machine Learning

  • Conference paper
  • First Online:
Machine Learning, Optimization, and Big Data (MOD 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10122))

Included in the following conference series:

Abstract

Inferring driver maneuvers is a fundamental issue in Advanced Driver Assistance Systems (ADAS), which can significantly increase security and reduce the risk of road accidents. This is not an easy task due to a number of factors such as driver distraction, unpredictable events on the road, and irregularity of the maneuvers. In this complex setting, Machine Learning techniques can play a fundamental and leading role to improve driving security. In this paper, we present preliminary results obtained within the Development Platform for Safe and Efficient Drive (DESERVE) European project. We trained a number of classifiers over a preliminary dataset to infer driver maneuvers of Lane Keeping and Lane Change. These preliminary results are very satisfactory and motivate us to proceed with the application of Machine Learning techniques over the whole dataset.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Mandalia, H.M.: Pattern recognition techniques to infer driver intentions. Technical report DU-CS-04-08, Drexel University (2004). https://www.cs.drexel.edu/tech-reports/DU-CS-04-08.pdf

  2. Dogan, U., Edelbrunner, H., Iossifidis, I.: Towards a driver model: preliminary study of lane change behavior. In: Proceedings of the XI International IEEE Conference on Intelligent Transportation Systems, pp. 931–937 (2008)

    Google Scholar 

  3. Burzio, G., Guidotti, L., Montanari, R., Perboli, G., Tadei, R.: A subjective field test on lane departure warning function - euroFOT. In: Proceedings of TRA-Transport Research Arena - Europe 2010 (2010)

    Google Scholar 

  4. DESERVE project. http://www.deserve-project.eu/

  5. Calefato, C., Kutila, M., Ferrarini, C., Landini, E., Baldi, M.M., Tadei, R.: Development of cost efficient ADAS tool platform for automotive industry. In: The 22nd ITS World Congress in Bordeaux (France), 5–9 October 2015 (2015)

    Google Scholar 

  6. Centro Ricerche Fiat, Orbassano (TO), Italy. https://www.crf.it/IT

  7. Torrione, P., Morton, K.: Pattern recognition toolbox. https://it.mathworks.com/matlabcentral/linkexchange/links/2947-pattern-recognition-toolbox

  8. INTEMPORA, Issy-Les-Moulineaux, France. https://intempora.com

  9. Mandalia, H.M., Salvucci, D.D.: Using support vector machines for lane change detection. In: Proceedings of the Human Factors and Ergonomics Society Annual Meeting, pp. 1965–1969. SAGE Publications (2005)

    Google Scholar 

  10. Butz, T., von Stryk, O.: Optimal control based modeling of vehicle driver properties. SAE Technical Paper 2005–01-0420 (2005). doi:10.4271/2005-01-0420

  11. Hayashi, K., Kojima, Y., Abe, K., Oguri, K.: Prediction of stopping maneuver considering driver’s state. In: Proceedings of the IEEE Intelligent Transportation Systems Conference, pp. 1191–1196 (2006)

    Google Scholar 

  12. McCall, J., Wipf, D., Trivedi, M., Rao, B.: Lane change intent analysis using robust operators and sparse bayesian learning. IEEE Trans. Intell. Transp. Syst. 8(3), 431–440 (2007)

    Article  Google Scholar 

  13. Salvucci, D.D., Mandalia, H.M., Kuge, N., Yamamura, T.: Lane-change detection using a computational driver model. Hum. Factors 49(3), 532–542 (2007)

    Article  Google Scholar 

  14. Huang, H., Gao, S.: Optimal paths in dynamic networks with dependent random link travel times. Transp. Res. B 46, 579–598 (2012)

    Article  Google Scholar 

  15. Deng, W.: A study on lane-change recognition using support vector machine. Ph.D. thesis, University of South Florida (2013)

    Google Scholar 

  16. Ly, M.V., Martin, S., Trivedi, M.M.: Driver classification and driving style recognition using inertial sensors. In: 2013 IEEE Intelligent Vehicles Symposium (IV), pp. 1040–1045 (2013)

    Google Scholar 

  17. Lin, N., Zong, C., Tomizuka, M., Song, P., Zhang, Z., Li, G.: An overview on study of identification of driver behavior characteristics for automotive control. Math. Probl. Eng. 2014, 15. Article ID 569109 (2014). doi:10.1155/2014/569109

    Google Scholar 

  18. Liu, W., Tao, D.: Multiview hessian regularization for image annotation. IEEE Trans. Image Process. 22(7), 2676–2687 (2013)

    Article  MathSciNet  Google Scholar 

  19. Ohn-Bar, E., Tawari, A., Martin, S., Trivedi, M.M.: Predicting driver maneuvers by learning holistic features. In: 2014 IEEE Intelligent Vehicles Symposium Proceedings, pp. 719–724 (2014)

    Google Scholar 

  20. Jain, A., Koppula, H.S., Raghavan, B., Soh, S., Saxena, A.: Car that knows before you do: anticipating maneuvers via learning temporal driving models (2015). http://arxiv.org/abs/1504.02789

  21. Tipping, M.E.: Sparse Bayesian learning and the relevance vector machine. J. Mach. Learn. Res. 1, 211–244 (2001)

    MathSciNet  MATH  Google Scholar 

  22. Jang, J.S.R.: Anfis: adaptive-network-based fuzzy inference systems. IEEE Trans. Syst. Man Cybern. 23(3), 665–685 (1993)

    Article  Google Scholar 

  23. ANFIS. http://it.mathworks.com/help/fuzzy/anfis.html

  24. Rabiner, L.R., Juang, B.H.: An introduction to hidden Markov models. IEEE ASSP Mag. 3, 4–16 (1986)

    Article  Google Scholar 

  25. Rabiner, L.R.: A tutorial on hidden Markov models and selected applications in speech recognition. Proc. IEEE 77(2), 257–286 (1989)

    Article  Google Scholar 

  26. Tagaki, T., Sugeno, M.: Fuzzy identification of systems and its applications to modeling and control. IEEE Trans. Syst. Man Cybern. 15(1), 116–132 (1985)

    Article  MATH  Google Scholar 

  27. Hsu, C.-W., Chang, C.-C., Lin, C.J.: A practical guide to support vector classification (2010). https://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf

Download references

Acknowledgements

This research was developed under the European Research Project DESERVE, Development Platform for Safe and Efficient Drive, Project reference: 295364, Funded under: FP7-JTI. The authors are grateful to Fabio Tango, Sandro Cumani and Kenneth Morton for the support provided during the project.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauro Maria Baldi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Baldi, M.M., Perboli, G., Tadei, R. (2016). Driver Maneuvers Inference Through Machine Learning. In: Pardalos, P., Conca, P., Giuffrida, G., Nicosia, G. (eds) Machine Learning, Optimization, and Big Data. MOD 2016. Lecture Notes in Computer Science(), vol 10122. Springer, Cham. https://doi.org/10.1007/978-3-319-51469-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51469-7_15

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51468-0

  • Online ISBN: 978-3-319-51469-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics