Skip to main content

Metabolic Circuit Design Automation by Multi-objective BioCAD

  • Conference paper
  • First Online:
Machine Learning, Optimization, and Big Data (MOD 2016)

Part of the book series: Lecture Notes in Computer Science ((LNISA,volume 10122))

Included in the following conference series:

Abstract

We present a thorough in silico analysis and optimization of the genome-scale metabolic model of the mycolic acid pathway in M. tuberculosis. We apply and further extend meGDMO to account for finer sensitivity analysis and post-processing analysis, thanks to the combination of statistical evaluation of strains robustness, and clustering analysis to map the phenotype-genotype relationship among Pareto optimal strains. In the first analysis scenario, we find 12 Pareto-optimal single gene set knockout, which completely shut down the pathway, hence critically reducing the pathogenicity of M. tuberculosis; as well as 34 genotypically different strains in which the production of mycolic acid is severely reduced.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hasdemir, D., Hoefsloot, H.C.J., Smilde, A.K.: Validation and selection of ODE based systems biology models: how to arrive at more reliable decisions. BMC Syst. Biol. 9, 1–9 (2015)

    Article  Google Scholar 

  2. Palsson, B.: Systems Biology. Cambridge University Press, Cambridge (2015)

    Book  MATH  Google Scholar 

  3. Kauffman, K.J., Prakash, P., Edwards, J.S.: Advances in flux balance analysis. Curr. Opin. Biotechnol. 14(5), 491–496 (2003)

    Article  Google Scholar 

  4. Yim, H., Haselbeck, R., Niu, W., Pujol-Baxley, C., Burgard, A., Boldt, J., Khandurina, J., et al.: Metabolic engineering of Escherichia coli for direct production of 1, 4-butanediol. Nat. Chem. Biol. 7(7), 445–452 (2011)

    Article  Google Scholar 

  5. Rockwell, G., Guido, N.J., Church, G.M.: Redirector: designing cell factories by reconstructing the metabolic objective. PLoS Comput. Biol. 9, 1 (2013)

    Article  Google Scholar 

  6. Figueredo, G.P., Siebers, P., Owen, M.R., Reps, J., Aickelin, U.: Comparing stochastic differential equations and agent-based modelling and simulation for early-stage cancer. PloS One 9(4), e95150 (2014)

    Article  Google Scholar 

  7. Hamilton, J.J., Reed, J.L.: Software platforms to facilitate reconstructing genome-scale metabolic networks. Environ. Microbiol. 16(1), 49–59 (2014)

    Article  Google Scholar 

  8. Costanza, J., Carapezza, G., Angione, C., LiĂ³, P., Nicosia, G.: Robust design of microbial strains. Bioinformatics 28(23), 3097–3104 (2012)

    Article  MATH  Google Scholar 

  9. Patane, A., Santoro, A., Costanza, J., Carapezza, G., Nicosia, G.: Pareto optimal design for synthetic biology. IEEE Trans. Biomed. Circ. Syst. 9(4), 555–571 (2015)

    Article  Google Scholar 

  10. Deb, K.: Multi-objective Optimization Using Evolutionary Algorithms. Wiley, Hoboken (2001)

    MATH  Google Scholar 

  11. Saltelli, A., Ratto, M., Andres, T., Campolongo, F., Cariboni, J., Gatelli, D., Saisana, M., Tarantola, S.: Global Sensitivity Analysis: The Primer. Wiley, Hoboken (2008)

    MATH  Google Scholar 

  12. Morris, M.D.: Factorial sampling plans for preliminary computational experiments. Technometrics 33(2), 161–174 (1991)

    Article  Google Scholar 

  13. Angione, C., Carapezza, G., Costanza, J., LiĂ³, P., Nicosia, G.: Computing with metabolic machines. Turing-100 10, 1–15 (2012)

    MATH  Google Scholar 

  14. Deb, K., Pratap, A., Agarwal, S., Meyarivan, T.: A fast and elitist multiobjective genetic algorithm: NSGA-II. Turing-100 10, 1–15 (2012)

    Google Scholar 

  15. Cutello, V., Narzisi, G., Nicosia, G., Pavone, M.: Clonal selection algorithms: a comparative case study using effective mutation potentials. In: Jacob, C., Pilat, M.L., Bentley, P.J., Timmis, J.I. (eds.) ICARIS 2005. LNCS, vol. 3627, pp. 13–28. Springer, Heidelberg (2005). doi:10.1007/11536444_2

    Chapter  Google Scholar 

  16. Angione, C., Costanza, J., Carapezza, G., LiĂ³, P., Nicosia, G.: Pareto epsilon-dominance and identifiable solutions for BioCAD modelling. In: Proceedings of the 50th Annual Design Automation Conference, pp. 43–51 (2013)

    Google Scholar 

  17. Carapezza, G., Umeton, R., Costanza, J., Angione, C., Stracquadanio, G., Papini, A., LiĂ², P., Nicosia, G.: Efficient behavior of photosynthetic organelles via Pareto optimality, identifiability, and sensitivity analysis. ACS Synth. Biol. 2(5), 274–288 (2013)

    Article  Google Scholar 

  18. Cutello, V., Narzisi, G., Nicosia, G., Pavone, M.: An immunological algorithm for global numerical optimization. In: Talbi, E.-G., Liardet, P., Collet, P., Lutton, E., Schoenauer, M. (eds.) EA 2005. LNCS, vol. 3871, pp. 284–295. Springer, Heidelberg (2006). doi:10.1007/11740698_25

    Chapter  Google Scholar 

  19. Long, M.R., Ong, W.K., Reed, J.L.: Computational methods in metabolic engineering for strain design. Curr. Opin. Biotechnol. 34, 135–141 (2015)

    Article  Google Scholar 

  20. Marino, S., Hogue, I.B., Ray, C.J., Kirschner, D.E.: A methodology for performing global uncertainty and sensitivity analysis in systems biology. J. Theor. Biol. 254(1), 178–196 (2008)

    Article  MathSciNet  Google Scholar 

  21. Kitano, H.: Biological robustness. Nat. Rev. Genet. 5(11), 826–837 (2004)

    Article  Google Scholar 

  22. Takayama, K., Wang, C., Besra, G.S.: Pathway to synthesis and processing of mycolic acids in Mycobacterium tuberculosis. Clin. Microbiol. Rev. 18(1), 81–101 (2005)

    Article  Google Scholar 

  23. Church, G.M., Regis, E.: Regenesis: How Synthetic Biology Will Reinvent Nature and Ourselves. Basic Books, New York (2014)

    Google Scholar 

  24. Church, G.M., Elowitz, M.B., Smolke, C.D., Voigt, C.A., Weiss, R.: Realizing the potential of synthetic biology. Nat. Rev. Mol. Cell Biol. 15(3), 289–294 (2014)

    Article  Google Scholar 

  25. Lee, S.K., Chou, H., Ham, T.S., Lee, T.S., Keasling, J.D.: Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels. Curr. Opin. Biotechnol. 19(6), 556–563 (2008)

    Article  Google Scholar 

  26. Andrianantoandro, E., Basu, S., Karig, D.K., Weiss, R.: Synthetic biology: new engineering rules for an emerging discipline. Mol. Syst. Biol. 2(1) (2006)

    Google Scholar 

  27. Burgard, A.P., Pharkya, P., Maranas, C.D.: Optknock: a bilevel programming framework for identifying gene knockout strategies for microbial strain optimization. Biotechnol. Bioeng. 84(6), 647–657 (2003)

    Article  Google Scholar 

  28. Yang, L., Cluett, W.R., Mahadevan, R.: EMILiO: a fast algorithm for genome-scale strain design. Metab. Eng. 13(3), 272–281 (2011)

    Article  Google Scholar 

  29. Lun, D.S., Rockwell, G., Guido, N.J., Baym, M., Kelner, J.A., Berger, B., Galagan, J.E., Church, G.M.: Large-scale identification of genetic design strategies using local search. Mol. Syst. Biol. 5(1), 296 (2009)

    Google Scholar 

  30. Orth, J.D., Conrad, T.M., Na, J., Lerman, J.A., Nam, H., Feist, A.M., Palsson, B.: A comprehensive genome-scale reconstruction of Escherichia coli metabolism-2011. Mol. Syst. Biol. 7(1), 535 (2011)

    Article  Google Scholar 

  31. Ester, M., Kriegel, H., Sander, J., Xu, X., et al.: A density-based algorithm for discovering clusters in large spatial databases with noise. Kdd 96(34), 226–231 (1996)

    Google Scholar 

  32. Ciccazzo, A., Conca, P., Nicosia, G., Stracquadanio, G.: An advanced clonal selection algorithm with ad-hoc network-based hypermutation operators for synthesis of topology and sizing of analog electrical circuits. In: Bentley, P.J., Lee, D., Jung, S. (eds.) ICARIS 2008. LNCS, vol. 5132, pp. 60–70. Springer, Heidelberg (2008). doi:10.1007/978-3-540-85072-4_6

    Chapter  Google Scholar 

  33. Anile, A.M., Cutello, V., Giuseppe, N., Rascuna, R., Spinella, S.: Comparison among evolutionary algorithms and classical optimization methods for circuit design problems. In: IEEE Congress on Evolutionary Computation, CEC 2005, Edinburgh, UK, 2–5 September 2005, vol. 1, pp. 765–772. IEEE Press (2005)

    Google Scholar 

  34. Cutello, V., Narzisi, G., Giuseppe, N., Pavone, M.: Real coded clonal selection algorithm for global numerical optimization using a new inversely proportional hypermutation operator. In: The 21st Annual ACM Symposium on Applied Computing, SAC 2006, Dijon, France, 23–27 April 2006, vol. 2, pp. 950–954. ACM Press (2006)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Piero Conca .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2016 Springer International Publishing AG

About this paper

Cite this paper

Patané, A., Conca, P., Carapezza, G., Santoro, A., Costanza, J., Nicosia, G. (2016). Metabolic Circuit Design Automation by Multi-objective BioCAD. In: Pardalos, P., Conca, P., Giuffrida, G., Nicosia, G. (eds) Machine Learning, Optimization, and Big Data. MOD 2016. Lecture Notes in Computer Science(), vol 10122. Springer, Cham. https://doi.org/10.1007/978-3-319-51469-7_3

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51469-7_3

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51468-0

  • Online ISBN: 978-3-319-51469-7

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics