Skip to main content

Design, Sensing, and Planning: Fundamentally Coupled Problems for Continuum Robots

  • Chapter
  • First Online:
Robotics Research

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 2))

Abstract

Designing a continuum robot’s geometry, sensing its shape/state in space, and planning collision-free trajectories that meet the needs of an application were initially thought of as decoupled problems for continuum robots. However, a body of literature is beginning to emerge showing advantages in solving various combinations of two of these three problems simultaneously. In this paper we argue that all three of these problems are fundamentally connected for continuum robots, that the connection can be analyzed using statistical state estimation, and that considering the three problems simultaneously can lead to better overall solutions. We provide examples for concentric-tube continuum robots.

This material is based upon work supported by the National Institutes of Health under awards R21 EB017952 and R01 EB017467, and the National Science Foundation under award IIS-1054331.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ayvali, E., Liang, C.-P., Mingyen, H., Chen, Y., Desai, J.P.: Towards a discretely actuated steerable cannula for diagnostic and therapeutic procedures. Int. J. Rob. Res. 31(5), 588–603 (2012)

    Article  Google Scholar 

  2. Baykal, C., Torres, L.G., Alterovitz, R.: Optimizing design parameters for sets of concentric tube robots using sampling-based motion planning. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4381–4387 (2015)

    Google Scholar 

  3. Bergeles, C., Dupont, P.E.: Planning stable paths for concentric tube robots. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 3077–3082 (2013)

    Google Scholar 

  4. Bergeles, C., Gosline, A.H., Vasilyev, N.V., Codd, P.J., del Nido, P.J., Dupont, P.E.: Concentric tube robot design and optimization based on task and anatomical constraints. IEEE Trans. Robot. 31(1), 67–84 (2015)

    Article  Google Scholar 

  5. Borum, A., Matthews, D., Bretl, T.: State estimation and tracking of deforming planar elastic rods. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 4127–4132 (2014)

    Google Scholar 

  6. Bry, A., Roy, N.: Rapidly-exploring random belief trees for motion planning under uncertainty. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 723–730 (2011)

    Google Scholar 

  7. Bryson, C.E., Rucker, D.C.: Toward parallel continuum manipulators. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 778–785 (2014)

    Google Scholar 

  8. Burgner, J., Gilbert, H.B., Webster III, R.J.: On the computational design of concentric tube robots: incorporating volume-based objectives. In: Proceedings - IEEE International Conference on Robotics and Automation, pp. 1193–1198 (2013)

    Google Scholar 

  9. Burgner-Kahrs, J., Rucker, D.C., Choset, H.: Continuum robots for medical applications: a survey. IEEE Trans. Robot., (2015, in press)

    Google Scholar 

  10. Crassidis, J.L., Junkins, J.L.: Optimal Estimation of Dynamic Systems, 2nd edn. CRC Press, Boca Raton (2011)

    Google Scholar 

  11. Du, Toit, Noel, E., Burdick, J.W.: Robot motion planning in dynamic, uncertain environments. IEEE Trans. Robot. 28(1), 101–115 (2012)

    Google Scholar 

  12. Dupont, P.E., Lock, J., Itkowitz, B., Butler, E.: Design and control of concentric-tube robots. IEEE Trans. Robot. 26(2), 209–225 (2010)

    Article  Google Scholar 

  13. Gilbert, H.B., Rucker, D.C., Webster III, R.J.: Concentric tube robots: state of the art and future directions. Proc. Int. Symp. Robot. Res., (2013, in press)

    Google Scholar 

  14. Gilbert, H.B., Hendrick, R.J., Webster, III., R.J.: Elastic Stability of Concentric Tube Robots. IEEE Trans. Rob. (2015)

    Google Scholar 

  15. Hannan, M.W., Walker, I.D.: Real-time shape estimation for continuum robots using vision. Robotica 23(5), 645–651 (2005)

    Article  Google Scholar 

  16. Hirose, S.: Biologically Inspired Robots, Snake-Like Locomotors and Manipulators. Oxford University Press, Oxcord (1993)

    Google Scholar 

  17. Jeon, J., Yi, B.-J.: Shape prediction algorithm for flexible endoscope. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 2856–2861 (2014)

    Google Scholar 

  18. Jones, B.A., Walker, I.D.: Kinematics for multisection continuum robots. IEEE Trans. Robot. 22(1), 43–55 (2006)

    Article  Google Scholar 

  19. Koolwal, A.B., Barbagli, F., Carlson, C., Liang, D.: An ultrasound-based localization algorithm for catheter ablation guidance in the left atrium. Int. J. Rob. Res. 29(6), 643–665 (2010)

    Article  Google Scholar 

  20. Lee, A., Duan, Y., Patil, S., Schulman, J., McCarthy, Z., van den Berg, J., Goldberg, K., Abbeel, P.: Sigma hulls for gaussian belief space planning for imprecise articulated robots amid obstacles. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5660–5667 (2013)

    Google Scholar 

  21. Lobaton, E.J., Fu, J., Torres, L.G., Alterovitz, R.: Continuous shape estimation of continuum robots using X-ray images. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 725–732 (2013)

    Google Scholar 

  22. Lyons, L.A., Webster III, R.J., Alterovitz, R.: Motion planning for active cannulas. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and System, pp. 801–806 (2009)

    Google Scholar 

  23. Novotny, P.M., Stoll, J.A., Dupont, P.E., Howe, R.D.: Real-time visual servoing of a robot using three-dimensional ultrasound. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 2655–2660 (2007)

    Google Scholar 

  24. Odhner, L.U., Jentoft, L.P., Claffee, M.R., Corson, N., Tenzer, Y., Ma, R.R., Buehler, M., Kohout, R., Howe, R.D., Dollar, A.M.: A compliant, underactuated hand for robust manipulation. Int. J. Rob. Res. 33(5), 736–752 (2014)

    Article  Google Scholar 

  25. Patil, S., van den Berg, J., Alterovitz, R.: Motion planning under uncertainty in highly deformable environments. In: Proceedings of Robotics: Science and Systems (2011)

    Google Scholar 

  26. Patil, S., van den Berg, J., Alterovitz, R.: Estimating probability of collision for safe motion planning under gaussian motion and sensing uncertainty. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 3238–3244 (2012)

    Google Scholar 

  27. Platt Jr., R., Tedrake, R., Kaelbling, L., Lozano-Perez, T.: Belief space planning assuming maximum likelihood observations. In: Proceedings of Robotics: Science and Systems (2010)

    Google Scholar 

  28. Prentice, S., Roy, N.: The belief roadmap: efficient planning in belief space by factoring the covariance. Int. J. Rob. Res. 28(11), 1448–1465 (2009)

    Article  Google Scholar 

  29. Roesthuis, R.J., Kemp, M., van den Dobbelsteen, J.J., Misra, S.: Three-dimensional needle shape reconstruction using an array of fiber bragg grating sensors. IEEE/ASME Trans. Mech. 19(4), 1115–1126 (2014)

    Article  Google Scholar 

  30. Rucker, D.C., Webster, R.J.: Statics and dynamics of continuum robots with general tendon routing and external loading. IEEE Trans. Robot. 27(6), 1033–1044 (2011)

    Article  Google Scholar 

  31. Rucker, D.C., Jones, B.A., Webster III, R.J.: A geometrically exact model for externally loaded concentric-tube continuum robots. IEEE Trans. Robot. 26(5), 769–780 (2010)

    Article  Google Scholar 

  32. Ryu, S.C., Dupont, P.E.: FBG-based shape sensing tubes for continuum robots. In: Proceedings IEEE International Conference on Robotics and Automation, pp. 3531–3537 (2014)

    Google Scholar 

  33. Ryu, S.C., Quek, Z.F., Koh, J.-S., Renaud, P., Black, R.J., Moslehi, B., Daniel, B.L., Cho, K.-J., Cutkosky, M.R.: Design of an optically controlled mr-compatible active needle. IEEE Trans. Robot. 31(1), 1–11 (2015)

    Article  Google Scholar 

  34. Simon, D.: Optimal State Estimation: Kalman, H\(_{\infty }\), and Nonlinear Approaches. Wiley, New Jersey (2006)

    Book  Google Scholar 

  35. Sun, W., Alterovitz, R.: Motion planning under uncertainty for medical needle steering using optimization in belief space. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1775–1781 (2014)

    Google Scholar 

  36. Sun, W., Torres, L.G., van den Berg, J., Alterovitz, R.: Safe motion planning for imprecise robotic manipulators by minimizing probability of collision. In: Proceedings of International Symposium Robotics Research (2013)

    Google Scholar 

  37. Swaney, P.J., Burgner, J., Pheiffer, T.S., Rucker, D.C., Gilbert, H.B., Ondrake, J.E., Simpson, A.L., Burdette, E.Clif, Miga, M.I., Webster III, R.J.: Tracked 3D ultrasound targeting with an active cannula. In: Proceedings of the Society of Photo-Optical Instrumentation Engineers, pp. 83160R–83160R–9 (2012)

    Google Scholar 

  38. Thrun, S., Burgard, W., Fox, D.: Prob. Robot. MIT Press, Cambridge (2006)

    Google Scholar 

  39. Torres, L.G., Alterovitz, R.: Motion planning for concentric tube robots using mechanics-based models. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 5153–5159 (2011)

    Google Scholar 

  40. Torres, L.G., Webster III, R.J., Alterovitz, R.: Task-oriented design of concentric tube robots using mechanics-based models. In: Proceedings of IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 4449–4455 (2012)

    Google Scholar 

  41. Torres, L.G., Baykal, C., Alterovitz, R.: Interactive-rate motion planning for concentric tube robots. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 1915–1921 (2014)

    Google Scholar 

  42. Torres, L.G., Kuntz, A., Gilbert, H.B., Swaney, P.J., Hendrick, R.J., Webster III, R.J., Alterovitz, R.: A motion planning approach to automatic obstacle avoidance during concentric tube robot teleoperation. In: Proceedings of the IEEE International Conference on Robotics and Automation, pp. 2361–2367 (2015)

    Google Scholar 

  43. Trovato, K., Popovic, A.: Collision-free 6D non-holonomic planning for nested cannulas. In: Proceedings of SPIE Medical Imaging, vol. 7261 (2009)

    Google Scholar 

  44. van den Berg, J., Patil, S., Alterovitz, R., Abbeel, P., Goldberg, K.: LQG-based planning, sensing, and control of steerable needles. In: Hsu, D. et al. (eds), Algorithmic Foundations of Robotics IX. Springer Tracts in Advanced Robotics, vol. 68, pp. 373–389. Springer, Heidelberg (2010)

    Google Scholar 

  45. van den Berg, J., Abbeel, P., Goldberg, K.: LQG-MP: optimized path planning for robots with motion uncertainty and imperfect state information. Int. J. Rob. Res. 30(7), 895–913 (2011)

    Article  Google Scholar 

  46. van den Berg, J., Patil, S., Alterovitz, R.: Motion planning under uncertainty using iterative local optimization in belief space. Int. J. Rob. Res. 31(11), 1263–1278 (2012)

    Article  Google Scholar 

  47. Webster III, R.J., Jones, B.A.: Design and kinematic modeling of constant curvature continuum robots: a review. Int. J. Rob. Res. 29(13), 1661–1683 (2010)

    Article  Google Scholar 

  48. Xu, K., Simaan, N.: Analytic formulation for kinematics, statics, and shape restoration of multibackbone continuum robots via elliptic integrals. ASME J. Mech. Robot. 2(1), 011006 (2009)

    Article  Google Scholar 

  49. Xu, R., Patel, R.V.: A fast torsionally compliant kinematic model of concentric-tube robots. In: Proceedings of International Conference IEEE Engineering in Medicine and Biology Society, pp. 904–907 (2012)

    Google Scholar 

  50. York, P., Swaney, P.J., Gilbert, H.B, Webster III, R.J.: A wrist for needle-sized surgical robots. In: Proceedings of IEEE International Conference on Robotics and Automation, pp. 1776–1781 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arthur W. Mahoney .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Mahoney, A.W., Bruns, T.L., Alterovitz, R., Webster III, R.J. (2018). Design, Sensing, and Planning: Fundamentally Coupled Problems for Continuum Robots. In: Bicchi, A., Burgard, W. (eds) Robotics Research. Springer Proceedings in Advanced Robotics, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-319-51532-8_17

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51532-8_17

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51531-1

  • Online ISBN: 978-3-319-51532-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics