Abstract
Fractional order calculus—a generalization of the traditional calculus to arbitrary order differointegration—is an effective mathematical tool that broadens the modeling boundaries of the familiar integer order calculus. Fractional order models enable faithful representation of viscoelastic materials that exhibit frequency dependent stiffness and damping characteristics within a single mechanical element. We propose the use of fractional order models/controllers in haptic systems to significantly extend the type of impedances that can be rendered using the integer order models. We study the effect of fractional order elements on the coupled stability of the overall sampled-data system. We show that fractional calculus generalization provides an additional degree of freedom for adjusting the dissipation behavior of the closed-loop system and generalize the well-known passivity condition to include fractional order impedances. Our results demonstrate the effect of the order of differointegration on the passivity boundary. We also characterize the effective impedance of the fractional order elements as a function of frequency and differointegration order.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Adams, R.J., Hannaford, B.: Stable haptic interaction with virtual environments. IEEE Trans. Robot. Autom. 15(3), 465–474 (1999)
Anderson, R., Spong, M.: Bilateral control of teleoperators with time delay. IEEE Trans. Autom. Control 34(5), 494–501 (1989)
Bagley, R.L., Torvik, P.J.: Fractional calculus - a different approach to the anaylsis of viscoelastically damped structures. AIAA J. 21, 741–748 (1983)
Caponetta, R., Dongola, G., Fortuna, L., Petras, I.: Fractional Order Systems. World Scientific, Singapore (2010)
Carpinteri, A., Mainardi, F.: Fractals and Fractional Calculus in Continuum Mechanics. Springer, Wien (1997)
Chen, Y.Q., Moore, K.: Discretization schemes for fractional-order differentiators and integrators. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 49(3), 363–367 (2002)
Chen, Y.Q., Petras, I., Xue, D.: Fractional order control - a tutorial. In: American Control Conference, pp. 1397–1411 (2009)
Colgate, J., Brown, J.: Factors affecting the z-width of a haptic display. In: IEEE International Conference on Robotics and Automation, vol. 4, pp. 3205–3210 (1994)
Colgate, J.E., Schenkel, G.G.: Passivity of a class of sampled-data systems: application to haptic interfaces. J. Robot. Syst. 14(1), 37–47 (1997)
Colgate, J., Grafing, P., Stanley, M., Schenkel, G.: Implementation of stiff virtual walls in force-reflecting interfaces. In: Virtual Reality Annual International Symposium, pp. 202–208 (1993)
Colgate, J., Stanley, M., Brown, J.: Issues in the haptic display of tool use. In: IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots, vol. 3, pp. 140–145 (1995)
Colonnese, N., Sketch, S., Okamura, A.: Closed-loop stiffness and damping accuracy of impedance-type haptic displays. In: IEEE Haptics Symposium (HAPTICS), pp. 97–102 (2014)
Craiem, D., Magin, R.L.: Fractional order models of viscoelasticity as an alternative in the analysis of red blood cell (RBC) membrane mechanics. Phys. Biol. 7(1), 13001 (2010)
Das, S., Pan, I.: Fractional Order Signal Processing: Introductory Concepts and Applications. Springer, Heidelberg (2012)
Diolaiti, N., Niemeyer, G., Barbagli, F., Salisbury, J.: Stability of haptic rendering: discretization, quantization, time delay, and coulomb effects. IEEE Trans. Robot. 22(2), 256–268 (2006)
Efe, M.: Fractional order systems in industrial automation 2014; a survey. IEEE Trans. Ind. Inf. 7(4), 582–591 (2011)
Ferreira, N.M.F., Machado, J.A.T.: Fractional-order hybrid control of robotic manipulators. In: International Conference on Advanced Robotics (2003)
Gil, J., Avello, A., Rubio, A., Florez, J.: Stability analysis of a 1 DOF haptic interface using the Routh–Hurwitz criterion. IEEE Trans. Control Syst. Technol. 12(4), 583–588 (2004)
Gillespie, R.B., Cutkosky, M.R.: Stable user-specific haptic rendering of the virtual wall. In: Proceedings of The International Mechanical Engineering Congress and Exhibition (1995)
Haddadi, A., Hashtrudi-Zaad, K.: Bounded-impedance absolute stability of bilateral teleoperation control systems. IEEE Trans. Haptics 3(1), 15–27 (2010)
Hannaford, B., Ryu, J.H.: Time-domain passivity control of haptic interfaces. IEEE Trans. Robot. Autom. 18(1), 1–10 (2002)
Hogan, N.: Controlling impedance at the man/machine interface. In: IEEE International Conference on Robotics and Automation, pp. 1626–1631 (1989)
Hulin, T., Preusche, C., Hirzinger, G.: Stability boundary for haptic rendering: influence of physical damping. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1570–1575 (2006)
Kim, J.P., Ryu, J.: Robustly stable haptic interaction control using an energy-bounding algorithm. Int. J. Robot. Res. (2009)
Kobayashi, Y., Moreira, P., Liu, C., Poignet, P., Zemiti, N., Fujie, M.: Haptic feedback control in medical robots through fractional viscoelastic tissue model. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 6704–6708 (2011)
Krishna, B.: Studies on fractional order differentiators and integrators: a survey. Signal Process. 91(3), 386–426 (2011)
Li, C., Zhang, F.: A survey on the stability of fractional differential equations. Eur. Phys. J. Spec. Top. 193(1), 27–47 (2011)
Lorenzo, C.F., Hartley, T.T.: Energy considerations for mechanical fractional-order elements. J. Comput. Nonlinear Dyn. 10, (2015)
Luo, Y., Chen, Y.Q.: Fractional Order Motion Controls. Wiley, New Jersey (2012)
Lurie, B.J.: Three-parameter tunable tilt-integral-derivative (TID) controller (1994)
Ma, C., Hori, Y.: Fractional-order control: theory and applications in motion control [past and present]. IEEE Ind. Electron. Mag. 1(4), 6–16 (2007)
Machado, J.T., Kiryakova, V., Mainardi, F.: Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 16(3), 1140–1153 (2011)
Minsky, M., Ming, O.y., Steele, O., Brooks Jr., F.P., Behensky, M.: Feeling and seeing: issues in force display. In: Proceedings of the Symposium on Interactive 3D Graphics, pp. 235–241 (1990)
Monje, C.A., Chen, Y.Q., Vinagre, B.M., Xue, D., Feliu-Batlle, V.: Fractional-order systems and controls: fundamentals and applications. Springer, London (2010)
Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, Cambridge (1974)
Ortigueira, M.D.: Fractional Calculus for Scientists and Engineers. Springer, Netherlands (2011)
Oustaloup, A., Mathieu, B., Lanusse, P.: The crone control of resonant plants: application to a flexible transmission. Eur. J. Control 1(2), 113–121 (1995)
Petras, I.: Fractional-Order Nonlinear Systems. Springer, Heidelberg (2011)
Podlubny, I.: Fractional-order systems and pi/sup /spl lambda//d/sup /spl mu//-controllers. IEEE Trans. Autom. Control 44(1), 208–214 (1999)
Ryu, J.H., Kwon, D.S., Hannaford, B.: Stable teleoperation with time-domain passivity control. IEEE Trans. Robot. Autom. 20(2), 365–373 (2004)
Xue, D., Chen, Y.Q.: A comparative introduction of four fractional order controllers. In: 4th World Congress on Intelligent Control and Automation, vol. 4, pp. 3228–3235 (2002)
Zhang, M., Nigwekar, P., Castaneda, B., Hoyt, K., Joseph, J.V., di Sant’Agnese, A., Messing, E.M., Strang, J.G., Rubens, D.J., Parker, K.J.: Quantitative characterization of viscoelastic properties of human prostate correlated with histology. Ultrasound Med. Biol. 34(7), 1033–1042 (2008)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2018 Springer International Publishing AG
About this chapter
Cite this chapter
Tokatli, O., Patoglu, V. (2018). Using Fractional Order Elements for Haptic Rendering. In: Bicchi, A., Burgard, W. (eds) Robotics Research. Springer Proceedings in Advanced Robotics, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-319-51532-8_23
Download citation
DOI: https://doi.org/10.1007/978-3-319-51532-8_23
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-51531-1
Online ISBN: 978-3-319-51532-8
eBook Packages: EngineeringEngineering (R0)