Skip to main content

Using Fractional Order Elements for Haptic Rendering

  • Chapter
  • First Online:
Robotics Research

Part of the book series: Springer Proceedings in Advanced Robotics ((SPAR,volume 2))

  • 3266 Accesses

Abstract

Fractional order calculus—a generalization of the traditional calculus to arbitrary order differointegration—is an effective mathematical tool that broadens the modeling boundaries of the familiar integer order calculus. Fractional order models enable faithful representation of viscoelastic materials that exhibit frequency dependent stiffness and damping characteristics within a single mechanical element. We propose the use of fractional order models/controllers in haptic systems to significantly extend the type of impedances that can be rendered using the integer order models. We study the effect of fractional order elements on the coupled stability of the overall sampled-data system. We show that fractional calculus generalization provides an additional degree of freedom for adjusting the dissipation behavior of the closed-loop system and generalize the well-known passivity condition to include fractional order impedances. Our results demonstrate the effect of the order of differointegration on the passivity boundary. We also characterize the effective impedance of the fractional order elements as a function of frequency and differointegration order.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams, R.J., Hannaford, B.: Stable haptic interaction with virtual environments. IEEE Trans. Robot. Autom. 15(3), 465–474 (1999)

    Article  Google Scholar 

  2. Anderson, R., Spong, M.: Bilateral control of teleoperators with time delay. IEEE Trans. Autom. Control 34(5), 494–501 (1989)

    Article  MathSciNet  Google Scholar 

  3. Bagley, R.L., Torvik, P.J.: Fractional calculus - a different approach to the anaylsis of viscoelastically damped structures. AIAA J. 21, 741–748 (1983)

    Article  MATH  Google Scholar 

  4. Caponetta, R., Dongola, G., Fortuna, L., Petras, I.: Fractional Order Systems. World Scientific, Singapore (2010)

    Book  Google Scholar 

  5. Carpinteri, A., Mainardi, F.: Fractals and Fractional Calculus in Continuum Mechanics. Springer, Wien (1997)

    Book  MATH  Google Scholar 

  6. Chen, Y.Q., Moore, K.: Discretization schemes for fractional-order differentiators and integrators. IEEE Trans. Circuits Syst. I: Fundam. Theory Appl. 49(3), 363–367 (2002)

    Article  MathSciNet  Google Scholar 

  7. Chen, Y.Q., Petras, I., Xue, D.: Fractional order control - a tutorial. In: American Control Conference, pp. 1397–1411 (2009)

    Google Scholar 

  8. Colgate, J., Brown, J.: Factors affecting the z-width of a haptic display. In: IEEE International Conference on Robotics and Automation, vol. 4, pp. 3205–3210 (1994)

    Google Scholar 

  9. Colgate, J.E., Schenkel, G.G.: Passivity of a class of sampled-data systems: application to haptic interfaces. J. Robot. Syst. 14(1), 37–47 (1997)

    Article  Google Scholar 

  10. Colgate, J., Grafing, P., Stanley, M., Schenkel, G.: Implementation of stiff virtual walls in force-reflecting interfaces. In: Virtual Reality Annual International Symposium, pp. 202–208 (1993)

    Google Scholar 

  11. Colgate, J., Stanley, M., Brown, J.: Issues in the haptic display of tool use. In: IEEE/RSJ International Conference on Intelligent Robots and Systems. Human Robot Interaction and Cooperative Robots, vol. 3, pp. 140–145 (1995)

    Google Scholar 

  12. Colonnese, N., Sketch, S., Okamura, A.: Closed-loop stiffness and damping accuracy of impedance-type haptic displays. In: IEEE Haptics Symposium (HAPTICS), pp. 97–102 (2014)

    Google Scholar 

  13. Craiem, D., Magin, R.L.: Fractional order models of viscoelasticity as an alternative in the analysis of red blood cell (RBC) membrane mechanics. Phys. Biol. 7(1), 13001 (2010)

    Article  Google Scholar 

  14. Das, S., Pan, I.: Fractional Order Signal Processing: Introductory Concepts and Applications. Springer, Heidelberg (2012)

    Book  MATH  Google Scholar 

  15. Diolaiti, N., Niemeyer, G., Barbagli, F., Salisbury, J.: Stability of haptic rendering: discretization, quantization, time delay, and coulomb effects. IEEE Trans. Robot. 22(2), 256–268 (2006)

    Article  Google Scholar 

  16. Efe, M.: Fractional order systems in industrial automation 2014; a survey. IEEE Trans. Ind. Inf. 7(4), 582–591 (2011)

    Article  Google Scholar 

  17. Ferreira, N.M.F., Machado, J.A.T.: Fractional-order hybrid control of robotic manipulators. In: International Conference on Advanced Robotics (2003)

    Google Scholar 

  18. Gil, J., Avello, A., Rubio, A., Florez, J.: Stability analysis of a 1 DOF haptic interface using the Routh–Hurwitz criterion. IEEE Trans. Control Syst. Technol. 12(4), 583–588 (2004)

    Article  Google Scholar 

  19. Gillespie, R.B., Cutkosky, M.R.: Stable user-specific haptic rendering of the virtual wall. In: Proceedings of The International Mechanical Engineering Congress and Exhibition (1995)

    Google Scholar 

  20. Haddadi, A., Hashtrudi-Zaad, K.: Bounded-impedance absolute stability of bilateral teleoperation control systems. IEEE Trans. Haptics 3(1), 15–27 (2010)

    Article  Google Scholar 

  21. Hannaford, B., Ryu, J.H.: Time-domain passivity control of haptic interfaces. IEEE Trans. Robot. Autom. 18(1), 1–10 (2002)

    Article  Google Scholar 

  22. Hogan, N.: Controlling impedance at the man/machine interface. In: IEEE International Conference on Robotics and Automation, pp. 1626–1631 (1989)

    Google Scholar 

  23. Hulin, T., Preusche, C., Hirzinger, G.: Stability boundary for haptic rendering: influence of physical damping. In: IEEE/RSJ International Conference on Intelligent Robots and Systems, pp. 1570–1575 (2006)

    Google Scholar 

  24. Kim, J.P., Ryu, J.: Robustly stable haptic interaction control using an energy-bounding algorithm. Int. J. Robot. Res. (2009)

    Google Scholar 

  25. Kobayashi, Y., Moreira, P., Liu, C., Poignet, P., Zemiti, N., Fujie, M.: Haptic feedback control in medical robots through fractional viscoelastic tissue model. In: Annual International Conference of the IEEE Engineering in Medicine and Biology Society, pp. 6704–6708 (2011)

    Google Scholar 

  26. Krishna, B.: Studies on fractional order differentiators and integrators: a survey. Signal Process. 91(3), 386–426 (2011)

    Article  MATH  Google Scholar 

  27. Li, C., Zhang, F.: A survey on the stability of fractional differential equations. Eur. Phys. J. Spec. Top. 193(1), 27–47 (2011)

    Article  Google Scholar 

  28. Lorenzo, C.F., Hartley, T.T.: Energy considerations for mechanical fractional-order elements. J. Comput. Nonlinear Dyn. 10, (2015)

    Google Scholar 

  29. Luo, Y., Chen, Y.Q.: Fractional Order Motion Controls. Wiley, New Jersey (2012)

    Book  Google Scholar 

  30. Lurie, B.J.: Three-parameter tunable tilt-integral-derivative (TID) controller (1994)

    Google Scholar 

  31. Ma, C., Hori, Y.: Fractional-order control: theory and applications in motion control [past and present]. IEEE Ind. Electron. Mag. 1(4), 6–16 (2007)

    Article  Google Scholar 

  32. Machado, J.T., Kiryakova, V., Mainardi, F.: Recent history of fractional calculus. Commun. Nonlinear Sci. Numer. Simul. 16(3), 1140–1153 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  33. Minsky, M., Ming, O.y., Steele, O., Brooks Jr., F.P., Behensky, M.: Feeling and seeing: issues in force display. In: Proceedings of the Symposium on Interactive 3D Graphics, pp. 235–241 (1990)

    Google Scholar 

  34. Monje, C.A., Chen, Y.Q., Vinagre, B.M., Xue, D., Feliu-Batlle, V.: Fractional-order systems and controls: fundamentals and applications. Springer, London (2010)

    Book  MATH  Google Scholar 

  35. Oldham, K.B., Spanier, J.: The Fractional Calculus. Academic Press, Cambridge (1974)

    MATH  Google Scholar 

  36. Ortigueira, M.D.: Fractional Calculus for Scientists and Engineers. Springer, Netherlands (2011)

    Book  MATH  Google Scholar 

  37. Oustaloup, A., Mathieu, B., Lanusse, P.: The crone control of resonant plants: application to a flexible transmission. Eur. J. Control 1(2), 113–121 (1995)

    Article  Google Scholar 

  38. Petras, I.: Fractional-Order Nonlinear Systems. Springer, Heidelberg (2011)

    Book  MATH  Google Scholar 

  39. Podlubny, I.: Fractional-order systems and pi/sup /spl lambda//d/sup /spl mu//-controllers. IEEE Trans. Autom. Control 44(1), 208–214 (1999)

    Article  MATH  Google Scholar 

  40. Ryu, J.H., Kwon, D.S., Hannaford, B.: Stable teleoperation with time-domain passivity control. IEEE Trans. Robot. Autom. 20(2), 365–373 (2004)

    Article  Google Scholar 

  41. Xue, D., Chen, Y.Q.: A comparative introduction of four fractional order controllers. In: 4th World Congress on Intelligent Control and Automation, vol. 4, pp. 3228–3235 (2002)

    Google Scholar 

  42. Zhang, M., Nigwekar, P., Castaneda, B., Hoyt, K., Joseph, J.V., di Sant’Agnese, A., Messing, E.M., Strang, J.G., Rubens, D.J., Parker, K.J.: Quantitative characterization of viscoelastic properties of human prostate correlated with histology. Ultrasound Med. Biol. 34(7), 1033–1042 (2008)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ozan Tokatli .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2018 Springer International Publishing AG

About this chapter

Cite this chapter

Tokatli, O., Patoglu, V. (2018). Using Fractional Order Elements for Haptic Rendering. In: Bicchi, A., Burgard, W. (eds) Robotics Research. Springer Proceedings in Advanced Robotics, vol 2. Springer, Cham. https://doi.org/10.1007/978-3-319-51532-8_23

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51532-8_23

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51531-1

  • Online ISBN: 978-3-319-51532-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics