Skip to main content

Robot Motion Planning and Control: Is It More than a Technological Problem?

  • Chapter
  • First Online:
Geometric and Numerical Foundations of Movements

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 117))

Abstract

The generation of motion for robots obeys classically to a two-step paradigm. The first step is the planning, where the typical problem is to find a geometric path that allows the robot to reach the desired configuration starting from the current position while ensuring obstacle avoidance and enforcing the satisfaction of kinematic constraints. Motion planning lays its grounding on the decidability properties of this classic geometrical problem. Moreover, the traditional approaches that are used to find solutions rely on the global probabilistic certainty of the convergence of path construction stochastically sampled in the configuration-space. The second step of motion generation is the control, where the robot has to perform the planned motion while ensuring the respect of dynamical constraints. Motion control seeks primarily for local controllability or at least the stability of the motion. The basic instances of this problems have long been tackled using local state-space control. However, the typical nonlinearity of the dynamics, together with the non controllability of its linearization, lead more and more solutions to resort to model predictive control. These methods make it possible to predict the outcome of a control strategy in a future horizon and to improve it accordingly, commonly by using numerical optimizations which take into account the safety constraints and efficiency intents. However, since few years, the improvement of computational capabilities and numerical algorithms allows more and more to deal with complex dynamical systems and for longer horizons. This allows then these approaches to untighten the local nature of their applications and progressively start wider explorations of their reachable space. This evolution brings us to the question of the rising overlap between planning and control. Today, most planning problems would take too much time to be solved online with numerical approaches. Does that imply that the generation of motion will theoretically never be free of the necessity of a prior planning? Or on the contrary, is planning only a numerical issue?

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    Sometimes it is called also model preview control, but this latter designation seems restrained to linear systems.

References

  1. M. Brady, Robot Motion: Planning and Control (MIT press, Cambridge, 1982)

    Google Scholar 

  2. J.-C. Latombe, Robot Motion Planning (Kluwer Academic Publishers, Boston, 1991)

    Book  MATH  Google Scholar 

  3. L. Sciavicco, B. Siciliano, Modelling and Control of Robot Manipulators (Springer, London, 2001)

    MATH  Google Scholar 

  4. B. Siciliano, O. Khatib, Springer Handbook of Robotics (Springer, Berlin, 2008)

    Book  MATH  Google Scholar 

  5. T. Lozano-Perez, Spatial planning: a configuration space approach. IEEE Trans. Comput. 100(2), 108–120 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  6. J.T. Schwartz, M. Sharir, On the “piano movers” problem. ii. general techniques for computing topological properties of real algebraic manifolds. Adv. Appl. Math. 4(3), 298–351 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  7. J.E. Hopcroft, J.T. Schwartz, M. Sharir, Planning, Geometry, and Complexity of Robot Motion (Ablex Publishing Corporation, New Jersey, 1987)

    Google Scholar 

  8. L.E. Kavraki, P. Švestka, J.-C. Latombe, M.H. Overmars, Probabilistic roadmaps for path planning in high-dimensional configuration spaces. IEEE Trans. Robot. Autom. 12(4), 566–580 (1996)

    Article  Google Scholar 

  9. S.M. Lavalle, J.J. Kuffner, Jr, Rapidly-exploring random trees: progress and prospects, in Algorithmic and Computational Robotics: New Directions (2000), pp. 293–308

    Google Scholar 

  10. J. Pan, L. Zhang, D. Manocha, Collision-free and smooth trajectory computation in cluttered environments. Int. J. Robot. Res. 31(10), 1155–1175 (2012)

    Article  Google Scholar 

  11. S. Sekhavat, P. Svestka, J.-P. Laumond, M.H. Overmars, Multilevel path planning for nonholonomic robots using semiholonomic subsystems. Int. J. Robot. Res. 17(8), 840–857 (1998)

    Article  Google Scholar 

  12. R.P. Paul, Robot Manipulators: Mathematics, Programming, and Control: The Computer Control of Robot Manipulators (MIT Press, Cambridge, 1981)

    Google Scholar 

  13. S. Kajita, F. Kanehiro, K. Kaneko, K. Fujiwara, K. Harada, K. Yokoi, H. Hirukawa, Biped walking pattern generation by using preview control of zero-moment point, in Proceedings of the 2003 IEEE International Conference on Robotics and Automation, ICRA’03, vol. 2 (IEEE, 2003), pp. 1620–1626

    Google Scholar 

  14. C. Dune, A. Herdt, O. Stasse, P-B. Wieber, K. Yokoi, E. Yoshida, Cancelling the sway motion of dynamic walking in visual servoing, in 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2010) pp. 3175–3180

    Google Scholar 

  15. A. Boeuf, J. Cortes, R. Alami, T. Siméon, Planning agile motions for quadrotors in constrained environments, in IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (2014)

    Google Scholar 

  16. B. Donald, P. Xavier, J. Canny, J. Reif, Kinodynamic motion planning. J. ACM (JACM) 40(5), 1048–1066 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  17. R. Tedrake, I. Manchester, M. Tobenkin, J. Roberts, Lqr-trees: feedback motion planning via sums-of-squares verification. Int. J. Robot. Res. 29(8), 1038–1052 (2010)

    Article  Google Scholar 

  18. O. Brock, O. Khatib, Elastic strips: a framework for motion generation in human environments. Int. J. Robot. Res. 21(12), 1031–1052 (2002)

    Article  Google Scholar 

  19. H. Jaouni, M. Khatib, J.-P. Laumond, Elastic bands for nonholonomic car-like robots: algorithms and combinatorial issues, in Algorithmic Foundations of Robotics on Robotics: The Algorithmic Perspective, WAFR ’98 (A. K. Peters, Ltd, Natick, 1998), pp. 69–80

    Google Scholar 

  20. Y. Yang, O. Brock, Elastic roadmaps–motion generation for autonomous mobile manipulation. Auton. Robot. 28(1), 113–130 (2010)

    Article  Google Scholar 

  21. I. Mordatch, E. Todorov, Z. Popović, Discovery of complex behaviors through contact-invariant optimization. ACM Trans. Graph. (TOG) 31(4), 43 (2012)

    Article  Google Scholar 

  22. N. Ratliff, M. Zucker, J. Andrew Bagnell, S. Srinivasa, Chomp: gradient optimization techniques for efficient motion planning, in IEEE International Conference on Robotics and Automation, 2009. ICRA’09 (IEEE, 2009), pp. 489–494

    Google Scholar 

  23. M. Toussaint, H. Ritter, O. Brock, The optimization route to robotics. KI-Künstliche Intell. 29(4), 379–388 (2015)

    Article  Google Scholar 

  24. J. Koenemann, A. Del Prete, Y. Tassa, E. Todorov, O. Stasse, M. Bennewitz, N. Mansard, Whole-body model-predictive control applied to the hrp-2 humanoid, in 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2015), pp. 3346–3351

    Google Scholar 

  25. Y. Tassa, T. Erez, E. Todorov, Synthesis and stabilization of complex behaviors through online trajectory optimization. in 2012 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE, 2012), pp. 4906–4913

    Google Scholar 

  26. L. Grüne, J. Pannek, Nonlinear Model Predictive Control (Springer, London, 2011)

    Book  MATH  Google Scholar 

  27. G. Schultz, K. Mombaur, Modeling and optimal control of human-like running. IEEE/ASME Trans. Mechatron. 15(5), 783–792 (2010)

    Article  Google Scholar 

  28. M. Mitchell Waldrop, On nature website: the chips are down for moore’s law, February 2016. http://www.nature.com/news/the-chips-are-down-for-moore-s-law-1.19338

  29. A. Forsgren, On Warm Starts for Interior Methods (Springer, Heidelberg, 2005)

    MATH  Google Scholar 

  30. P. Hämäläinen, J. Rajamäki, C. Karen Liu, Online control of simulated humanoids using particle belief propagation. ACM Trans. Graph. (TOG) 34(4), 81 (2015)

    Article  MATH  Google Scholar 

  31. J. Schulman, Y. Duan, J. Ho, A. Lee, I. Awwal, H. Bradlow, J. Pan, S. Patil, K. Goldberg, P. Abbeel, Motion planning with sequential convex optimization and convex collision checking. Int. J. Robot. Res. 33(9), 1251–1270 (2014)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mehdi Benallegue .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Benallegue, M., Laumond , JP., Mansard, N. (2017). Robot Motion Planning and Control: Is It More than a Technological Problem?. In: Laumond, JP., Mansard, N., Lasserre, JB. (eds) Geometric and Numerical Foundations of Movements . Springer Tracts in Advanced Robotics, vol 117. Springer, Cham. https://doi.org/10.1007/978-3-319-51547-2_1

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51547-2_1

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51546-5

  • Online ISBN: 978-3-319-51547-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics