Skip to main content

Physical Interaction via Dynamic Primitives

  • Chapter
  • First Online:
Geometric and Numerical Foundations of Movements

Part of the book series: Springer Tracts in Advanced Robotics ((STAR,volume 117))

Abstract

Humans out-perform contemporary robots despite vastly slower ‘wetware’ (e.g. neurons) and ‘hardware’ (e.g. muscles). The basis of human sensory-motor performance appears to be quite different from that of robots. Human haptic perception is not compatible with Riemannian geometry, the foundation of classical mechanics and robot control. Instead, evidence suggests that human control is based on dynamic primitives, which enable highly dynamic behavior with minimal high-level supervision and intervention. Motion primitives include submovements (discrete actions) and oscillations (rhythmic behavior). Adding mechanical impedance as a class of dynamic primitives facilitates controlling physical interaction. Both motion and interaction primitives may be combined by re-purposing the classical equivalent electric circuit and extending it to a nonlinear equivalent network. It highlights the contrast between the dynamics of physical systems and the dynamics of computation and information processing. Choosing appropriate task-specific impedance may be cast as a stochastic optimization problem, though its solution remains challenging. The composability of dynamic primitives, including mechanical impedances, enables complex tasks, including multi-limb coordination, to be treated as a composite of simpler tasks, each represented by an equivalent network. The most useful form of nonlinear equivalent network requires the interactive dynamics to respond to deviations from the motion that would occur without interaction. That suggests some form of underlying geometric structure but which geometry is induced by a composition of motion and interactive dynamic primitives? Answering that question might pave the way to achieve superior robot control and seamless human-robot collaboration.

Submitted to: Laumond, J.-P. Geometric and Numerical Foundations of Movement.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    Twitch contraction time is the time from an impulsive stimulus (e.g. electrical) to peak isometric tension.

  2. 2.

    This is one advantage of a Phillips (cross-head) screwdriver, invented by John P. Thompson, U.S. Patent 1,908,080 May 9, 1933, assigned to Henry F. Phillips.

  3. 3.

    This result may be extended to large \(\Delta \theta \) and \(\Delta x\): for any \(\Delta x\) imposed within the workspace, at equilibrium the linkage assumes a pose that minimizes total potential energy; the analysis is omitted for brevity.

  4. 4.

    When it can be computed; in some configurations and some directions, e.g., arm fully outstretched, compliance approaches zero and stiffness approaches infinity.

References

  1. C. Abul-Haj, N. Hogan, An emulator system for developing improved elbow-prosthesis designs. IEEE Trans. Biomed. Eng. 34, 724–737 (1987)

    Article  Google Scholar 

  2. C.J. Abul-Haj, N. Hogan, Functional assessment of control-systems for cybernetic elbow prostheses. 1. Description of the technique. IEEE Trans. Biomed. Eng. 37, 1025–1036 (1990a)

    Article  Google Scholar 

  3. C.J. Abul-Haj, N. Hogan, Functional assessment of control-systems for cybernetic elbow prostheses. 2. Application of the technique. IEEE Trans. Biomed. Eng. 37, 1037–1047 (1990b)

    Article  Google Scholar 

  4. J. Ahn, N. Hogan, A simple state-determined model reproduces entrainment and phase-locking of human walking dynamics. PLoS ONE 7, e47963 (2012a)

    Article  Google Scholar 

  5. J. Ahn, N. Hogan, Walking is not like reaching: evidence from periodic mechanical perturbations. PLoS ONE 7, e31767 (2012b)

    Article  Google Scholar 

  6. J.R. Andrews, N. Hogan, Impedance Control as a Framework for Implementing Obstacle Avoidance in a Manipulator, in BOOK, D. E. H. A. W. J. (ed.) Control of Manufacturing Processes and Robotic Systems (ASME, 1983)

    Google Scholar 

  7. A.J. Bastian, T.A. Martin, J.G. Keating, W.T. Thach, Cerebellar ataxia: abnormal control of interaction torques across multiple joints. J. Neurophysiol. 76, 492–509 (1996)

    Google Scholar 

  8. A. Bissal, J. Magnusson, E. Salinas, G. Engdahl, A. Eriksson, On the design of ultra-fast electromechanical actuators: a comprehensive multi-physical simulation model, in Sixth International Conference on Electromagnetic Field Problems and Applications (ICEF) (2012)

    Google Scholar 

  9. T. Boaventura, C. Semini, J. Buchli, M. Frigerio, M. Focchi, D.G. Caldwell, Dynamic torque control of a hydraulic quadruped robot, in IEEE International Conference on Robotics and Automation (IEEE, Saint Paul, Minnesota, USA, 2012)

    Google Scholar 

  10. C. Boesch, H. Boesch, Tool use and tool making in wild chimpanzees. Folia Primatologica 54, 86–99 (1990)

    Article  Google Scholar 

  11. D.J. Braun, S. Apte, O. Adiyatov, A. Dahiya, N. Hogan, Compliant actuation for energy efficient impedance modulation, in IEEE International Conference on Robotics and Automation (2016)

    Google Scholar 

  12. J. Buchli, F. Stulp, E. Theodorou, S. Schaal, Learning variable impedance control. Int. J. Robot. Res. 30, 820–833 (2011)

    Article  Google Scholar 

  13. M. Cohen, T. Flash, Learning impedance parameters for robot control using an associative search network. IEEE Trans. Robot. Autom. 7, 382–390 (1991)

    Article  Google Scholar 

  14. E. Colgate, On the intrinsic limitations of force feedback compliance controllers, in Robotics Research - 1989, eds. by K. Youcef-Toumi, H. Kazerooni (ASME, 1989)

    Google Scholar 

  15. J.E. Colgate, N. Hogan, Robust control of dynamically interacting systems. Int. J. Control 48, 65–88 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  16. J.E. Colgate, N. Hogan, The interaction of robots with passive environments: application to force feedback control, in Fourth International Conference on Advanced Robotics, June 13–15 (Columbus, Ohio, 1989)

    Google Scholar 

  17. J.J. Collins, C.J. de Luca, Open-loop and closed-loop control of posture: a random-walk analysis of center-of-pressure trajectories. Exp. Brain Res. 95, 308–318 (1993)

    Article  Google Scholar 

  18. F. Crevecoeur, J. McIntyre, J.L. Thonnard, P. Lefèvre, Movement stability under uncertain internal models of dynamics. J. Neurophysiol. 104, 1301–1313 (2010)

    Article  Google Scholar 

  19. A. de Rugy, D. Sternad, Interaction between discrete and rhythmic movements: reaction time and phase of discrete movement initiation against oscillatory movements. Brain Res. 994, 160–174 (2003)

    Article  Google Scholar 

  20. S. Degallier, A. Ijspeert, Modeling discrete and rhythmic movements through motor primitives: a review. Biol. Cybern. 103, 319–338 (2010)

    Article  MATH  Google Scholar 

  21. R. Deits, R. Tedrake, Efficient mixed-integer planning for UAVs in cluttered environments, in IEEE International Conference on Robotics and Automation (ICRA) (IEEE, Seattle, WA, 2015)

    Google Scholar 

  22. J.A. Doeringer, N. Hogan, Intermittency in preplanned elbow movements persists in the absence of visual feedback. J. Neurophysiol. 80, 1787–1799 (1998a)

    Google Scholar 

  23. J.A. Doeringer, N. Hogan, Serial processing in human movement production. Neural Netw. 11, 1345–1356 (1998b)

    Article  Google Scholar 

  24. J. Englsberger, C. Ott, A. Albu-Schaffer, Three-dimensional bipedal walking control based on divergent component of motion. IEEE Trans. Robot. 31, 355–368 (2015)

    Article  Google Scholar 

  25. C.W. Eurich, J.G. Milton, Noise-induced transitions in human postural sway. Phys. Rev. E 54, 6681–6684 (1996)

    Article  Google Scholar 

  26. E.D. Fasse, N. Hogan, B.A. Kay, F.A. Mussa-Ivaldi, Haptic interaction with virtual objects - spatial perception and motor control. Biol. Cybern. 82, 69–83 (2000)

    Article  Google Scholar 

  27. J. Flanagan, P. Vetter, R. Johansson, D. Wolpert, Prediction precedes control in motor learning. Curr. Biol. 13, 146–150 (2003)

    Article  Google Scholar 

  28. J.R. Flanagan, A.K. Rao, Trajectory adaptation to a nonlinear visuomotor transformation: evidence of motion planning in visually perceived space. J. Neurophysiol. 74, 2174–2178 (1995)

    Google Scholar 

  29. T. Flash, N. Hogan, The coordination of arm movements - an experimentally confirmed mathematical model. J. Neurosci. 5, 1688–1703 (1985)

    Google Scholar 

  30. H. Gomi, M. Kawato, Equilibrium-point control hypothesis examined by measured arm stiffness during multijoint movement. Science 272, 117–120 (1996)

    Article  Google Scholar 

  31. P. Gribble, D.J. Ostry, V. Sanguinetti, R. Laboissiere, Are complex control signals required for human arm movement? J. Neurophysiol. 79, 1409–1424 (1998)

    Google Scholar 

  32. O. Heaviside, Electrical Papers (Massachusetts, Boston, 1925a)

    MATH  Google Scholar 

  33. O. Heaviside, Electrical Papers (Massachusetts, Boston, 1925b)

    MATH  Google Scholar 

  34. H.V. Helmholtz, II. Uber einige Gesetze der Vertheilung elektrischer Ströme in körperlichen Leitern mit Anwendung auf die thierisch-elektrischen Versuche [Some laws concerning the distribution of electrical currents in conductors with applications to experiments on animal electricity]. Annalen der Physik und Chemie 89, 211–233 (1853)

    Article  Google Scholar 

  35. A.J. Hodgson, Inferring Central Motor Plans from Attractor Trajectory Measurements, Ph.D, Institute of Technology, Massachusetts, 1994

    Google Scholar 

  36. A.J. Hodgson, N. Hogan, A model-independent definition of attractor behavior applicable to interactive tasks. IEEE Trans. Syst. Man Cybern. Part C- Appl. Rev. 30, 105–118 (2000)

    Article  Google Scholar 

  37. J.A. Hoffer, S. Andreassen, Regulation of soleus muscle stiffness in premammillary cats: intrinsic and reflex components. J. Neurophysiol. 45, 267–285 (1981)

    Google Scholar 

  38. N. Hogan, Adaptive control of mechanical impedance by coactivation of antagonist muscles. IEEE Trans. Autom. Control 29, 681–690 (1984)

    Article  MATH  Google Scholar 

  39. N. Hogan, Impedance control - an approach to manipulation. 1. Theory. J. Dyn. Syst. Meas. Control Trans. Asme 107, 1–7 (1985a)

    Article  MATH  Google Scholar 

  40. N. Hogan, Impedance control - an approach to manipulation. 2. Implementation. J. Dyn. Syst. Meas. Control Trans. Asme 107, 8–16 (1985b)

    Article  MATH  Google Scholar 

  41. N. Hogan, Impedance control - an approach to manipulation. 3. Applications. J. Dyn. Syst. Meas. Control Trans. Asme 107, 17–24 (1985c)

    Article  MATH  Google Scholar 

  42. N. Hogan, Mechanical impedance of single-and multi-articular systems, in Multiple Muscle Systems: Biomechanics and Movement Organization, eds. by J. Winters, S. Woo (Springer, New York, 1990)

    Google Scholar 

  43. N. Hogan, A general actuator model based on nonlinear equivalent networks. IEEE/ASME Trans. Mechatron. 19, 1929–1939 (2014)

    Article  Google Scholar 

  44. N. Hogan, S.P. Buerger, Impedance and interaction control, in Robotics and Automation Handbook, ed by T.R. Kurfess (CRC Press, Boca Raton, FL, 2005)

    Google Scholar 

  45. N. Hogan, B.A. Kay, E.D. Fasse, F.A. Mussaivaldi, Haptic illusions - experiments on human manipulation and perception of virtual objects. Cold Spring Harbor Symp. Quant. Biol. 55, 925–931 (1990)

    Article  Google Scholar 

  46. N. Hogan, H.I. Krebs, B. Rohrer, J.J. Palazzolo, L. Dipietro, S.E. Fasoli, J. Stein, R. Hughes, W.R. Frontera, D. Lynch, B.T. Volpe, Motions or muscles? Some behavioral factors underlying robotic assistance of motor recovery. J. Rehab. Res. Dev. 43, 605–618 (2006)

    Article  Google Scholar 

  47. N. Hogan, D. Sternad, Dynamic primitives of motor behavior. Biol. Cybern. 106, 727–739 (2012)

    Article  MathSciNet  Google Scholar 

  48. N. Hogan, D. Sternad, Dynamic primitives in the control of locomotion. Front. Comput. Neurosci. 7, 1–16 (2013)

    Article  Google Scholar 

  49. L.A. Hosford, Development and Testing of an Impedance Controller on an Anthropomorphic Robot for Extreme Environment Operations, Master of Science, Massachusetts Institute of Technology (2016)

    Google Scholar 

  50. D.R. Humphrey, D.J. Reed, Separate cortical systems for control of joint movement and joint stiffness: reciprocal activation and coactivation of antagonist muscles, in Motor Control Mechanisms in Health and Disease, ed. by J.E. Desmedt (Raven Press, New York, 1983)

    Google Scholar 

  51. G.R. Hunt, Manufacture and use of hook-tools by New Caledonian crows. Nature 379, 259–251 (1996)

    Google Scholar 

  52. A.J. Ijspeert, J. Nakanishi, H. Hoffmann, P. Pastor, S. Schaal, Dynamical movement primitives: learning attractor models for motor behaviors. Neural Comput. 25, 328–373 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  53. S.H. Johnson-Frey, The neural basis of complex tool use in humans. Trends Cogn. Sci. 8, 71–78 (2004)

    Article  Google Scholar 

  54. D.H. Johnson, Origins of the equivalent circuit concept: the current-source equivalent. Proc. IEEE 91, 817–821 (2003a)

    Article  Google Scholar 

  55. D.H. Johnson, Origins of the equivalent circuit concept: the voltage-source equivalent. Proc. IEEE 91, 636–640 (2003b)

    Article  Google Scholar 

  56. E.R. Kandel, J.H. Schwartz, T.M. Jessell (eds.), Principles of Neural Science (McGraw-Hill, New York, 2000)

    Google Scholar 

  57. M. Kawato, Internal models for motor control and trajectory planning. Curr. Opin. Neurobiol. 9, 718–727 (1999)

    Article  Google Scholar 

  58. J.A. Kelso, Phase transitions and critical behavior in human bimanual coordination. Am. J. Physiol. Regul. Integr. Comp. Physiol. 246, R1000–R1004 (1984)

    Google Scholar 

  59. J.A.S. Kelso, On the oscillatory basis of movement. Bull. Psychon. Soc. 18, 49–70 (1981)

    Google Scholar 

  60. B. Kenward, A.A.S. Weir, C. Rutz, A. Kacelnik, Behavioral ecology: Tool manufacture by naïve juvenile crows. Nature 433 (2005)

    Google Scholar 

  61. H.I. Krebs, M.L. Aisen, B.T. Volpe, N. Hogan, Quantization of continuous arm movements in humans with brain injury. Proc. Natl. Acad. Sci. U.S.A. 96, 4645–4649 (1999)

    Article  Google Scholar 

  62. S. Kuindersma, R. Deits, M. Fallon, A. Valenzuela, H. Dai, F. Permenter, T. Koolen, P. Marion, R. Tedrake, Optimization-based locomotion planning, estimation, and control design for the Atlas humanoid robot. Auton. Robot. 40, 429–455 (2016)

    Article  Google Scholar 

  63. T.M. Kunnapas, An analysis of the "vertical-horizontal illusion". J. Exp. Psychol. 49, 134–140 (1955)

    Article  Google Scholar 

  64. J.R. Lackner, P. Dizio, Rapid adaptation to coriolis force perturbations of arm trajectory. J. Neurophysiol. 72, 299–313 (1994)

    Google Scholar 

  65. H. Lee, P. Ho, M.A. Rastgaar, H.I. Krebs, N. Hogan, Multivariable static ankle mechanical impedance with relaxed muscles. J. Biomech. 44, 1901–1908 (2011)

    Article  Google Scholar 

  66. H. Lee, P. Ho, M.A. Rastgaar, H.I. Krebs, N. Hogan, Multivariable static ankle mechanical impedance with active muscles. IEEE Trans. Neural Syst. Rehab. Eng. 22, 44–52 (2013)

    Google Scholar 

  67. H. Lee, N. Hogan, Time-varying ankle mechanical impedance during human locomotion. IEEE Trans. Neural Syst. Rehab. Eng. (2014)

    Google Scholar 

  68. H. Lee, N. Hogan, Energetic passivity of the human ankle joint. IEEE Trans. Neural Syst. Rehab. Eng. (2016)

    Google Scholar 

  69. H. Lee, H. Krebs, N. Hogan, Multivariable dynamic ankle mechanical impedance with active muscles. IEEE Trans. Neural Syst. Rehab. Eng. 22, 971–981 (2014a)

    Article  Google Scholar 

  70. H. Lee, H.I. Krebs, N. Hogan, Linear time-varying identification of ankle mechanical impedance during human walking, in 5th Annual Dynamic Systems and Control Conference (ASME, Fort Lauderdale, Florida, USA, 2012)

    Google Scholar 

  71. H. Lee, H.I. Krebs, N. Hogan, Multivariable dynamic ankle mechanical impedance with relaxed muscles. IEEE Trans. Neural Syst. Rehab. Eng. 22, 1104–1114 (2014b)

    Article  Google Scholar 

  72. Y. Li, S.S. GE, Impedance learning for robots interacting with unknown environments. IEEE Trans. Control Syst. Technol. 22 (2014)

    Google Scholar 

  73. F.M. Marchetti, S.J. Lederman, The haptic radial-tangential effect: two tests of Wong’s ’moments-of-inertia’ hypothesis. Bull. Psychon. Soc. 21, 43–46 (1983)

    Article  Google Scholar 

  74. J.C. Maxwell, A Treatise on Electricity and Magnetism (1873)

    Google Scholar 

  75. H.F. Mayer, Ueber das Ersatzschema der Verstärkerröhre [On equivalent circuits for electronic amplifiers]. Telegraphen- und Fernsprech-Technik 15, 335–337 (1926)

    Google Scholar 

  76. Moog, Moog G761/761 Series Flow Control Servovalves (Moog Inc, 2014)

    Google Scholar 

  77. J.M. Morgan, W.W. Milligan, A 1 kHz servohydraulic fatigue testing system, in Conference on High Cycle Fatigue of Structural Materials, ed. by Srivatsan, W. O. S. A. T. S. (Warrendale, PA, 1997)

    Google Scholar 

  78. W.S. Newman, N. Hogan, High speed robot control and obstacle avoidance using dynamic potential functions, in IEEE International Conference on Robotics and Automation (IEEE, New Jersey, 1987)

    Google Scholar 

  79. I. Newton, Philosophiæ Naturalis Principia Mathematica (1687)

    Google Scholar 

  80. T.R. Nichols, J.C. Houk, Improvement in linearity and regulation of stiffness that results from actions of stretch reflex. J. Neurophysiol. 39, 119–142 (1976)

    Google Scholar 

  81. E.L. Norton, Design of Finite Networks for Uniform Frequency Characteristic (Western Electric Company Inc, New York, 1926)

    Google Scholar 

  82. J. Ochoa, D. Sternad, N. Hogan, Entrainment of overground human walking to mechanical perturbations at the ankle joint, in International Conference on Biomedical Robotics and Biomechatronics (BioRob) (IEEE, Singapore, 2016)

    Google Scholar 

  83. L.U. Odhner, L.P. Jentoft, M.R. Claffee, N. Corson, Y. Tenzer, R.R. Ma, M. Buehler, R. Kohout, R.D. Howe, A.M. Dollar, A compliant, underactuated hand for robust manipulation. Int. J. Robot. Res. 33, 736–752 (2014)

    Article  Google Scholar 

  84. N. Paine, S. Oh, L. Sentis, Design and control considerations for high-performance series elastic actuators. IEEE/ASME Trans. Mechatron. 19, 1080–1091 (2014)

    Article  Google Scholar 

  85. R. Plamondon, A.M. Alimi, P. Yergeau, F. Leclerc, Modelling velocity profiles of rapid movements: a comparative study. Biol. Cybern. 69, 119–128 (1993)

    Article  Google Scholar 

  86. R.A. Popat, D.E. Krebs, J. Mansfield, D. Russell, E. Clancy, K.M. Gillbody, N. Hogan, Quantitative assessment of 4 men using above-elbow prosthetic control. Arch. Phys. Med. Rehab. 74, 720–729 (1993)

    Article  Google Scholar 

  87. J. Pratt, J. Carff, S. Drakunov, A. Goswami, Capture point: a step toward humanoid push recovery, in Humanoids 2006 (IEEE, New Jersey, 2006)

    Google Scholar 

  88. D. Rancourt, N. Hogan, Dynamics of pushing. J. Mot. Behav. 33, 351–362 (2001a)

    Article  Google Scholar 

  89. D. Rancourt, N. Hogan, Stability in force-production tasks. J. Mot. Behav. 33, 193–204 (2001b)

    Article  Google Scholar 

  90. D. Rancourt, N. Hogan, The biomechanics of force production, in Progress in Motor Control: A Multidisciplinary Perspective, ed by D. Sternad (Springer, Heidelberg, 2009)

    Google Scholar 

  91. B. Rohrer, S. Fasoli, H.I. Krebs, B. Volpe, W.R. Frontera, J. Stein, N. Hogan, Submovements grow larger, fewer, and more blended during stroke recovery. Mot. Control 8, 472–483 (2004)

    Article  Google Scholar 

  92. B. Rohrer, N. Hogan, Avoiding spurious submovement decompositions: a globally optimal algorithm. Biol. Cybern. 89, 190–199 (2003)

    Article  MATH  Google Scholar 

  93. B. Rohrer, N. Hogan, Avoiding spurious submovement decompositions II: a scattershot algorithm. Biol. Cybern. 94, 409–414 (2006)

    Article  MATH  Google Scholar 

  94. R. Ronsse, D. Sternad, P. Lefevre, A computational model for rhythmic and discrete movements in uni- and bimanual coordination. Neural Comput. 21, 1335–1370 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  95. R. Shadmehr, F.A. Mussa-Ivaldi, Adaptive representation of dynamics during learning of a motor task. J. Neurosci. 14, 3208–3224 (1994)

    Google Scholar 

  96. R.N. Shepard, J. Metzler, Mental rotation of three-dimensional objects. Science 171, 701–703 (1971)

    Article  Google Scholar 

  97. D. Sternad, Towards a unified framework for rhythmic and discrete movements: behavioral, modeling and imaging results, in Coordination: Neural, Behavioral and Social Dynamics, eds. by A. Fuchs, V. Jirsa (Springer, New York, 2008)

    Google Scholar 

  98. D. Sternad, E.L. Amazeen, M.T. Turvey, Diffusive, synaptic, and synergetic coupling: an evaluation through inphase and antiphase rhythmic movements. J. Mot. Behav. 28, 255–269 (1996)

    Article  Google Scholar 

  99. D. Sternad, D. Collins, M.T. Turvey, The detuning factor in the dynamics of interlimb rhythmic coordination. Biol. Cybern. 73, 27–35 (1995)

    Article  Google Scholar 

  100. D. Sternad, A. de Rugy, T. Pataky, W.J. Dean, Interactions of discrete and rhythmic movements over a wide range of periods. Exp. Brain Res. 147, 162–174 (2002)

    Article  Google Scholar 

  101. D. Sternad, W.J. Dean, Rhythmic and discrete elements in multi-joint coordination. Brain Res. 989, 152–171 (2003)

    Article  Google Scholar 

  102. D. Sternad, W.J. Dean, S. Schaal, Interaction of rhythmic and discrete pattern generators in single-joint movements. Hum. Mov. Sci. 19, 627–664 (2000)

    Article  Google Scholar 

  103. D. Sternad, H. Marino, S.K. Charles, M. Duarte, L. Dipietro, N. Hogan, Transitions between discrete and rhythmic primitives in a unimanual task. Front. Comput. Neurosci. 7 (2013)

    Google Scholar 

  104. D. Sternad, M.T. Turvey, R.C. Schmidt, Average phase difference theory and 1:1 phase entrainment in interlimb coordination. Biol. Cybern. 67, 223–231 (1992)

    Article  Google Scholar 

  105. L.C. Thévenin, Sur un nouveau théorème d’électricité dynamique [On a new theorem of dynamic electricity]. Comptes Rendus des Séances de l’Académie des Sciences 97, 159–161 (1883)

    MATH  Google Scholar 

  106. W.J. Thompson, Angular Momentum: An Illustrated Guide to Rotational Symmetries for Physical Systems (Wiley-Interscience, 1994)

    Google Scholar 

  107. B. Vanderborght, A. Albu-Schaeffer, A. Bicchi, E. Burdet, D.G. Caldwell, R. Carloni, M. Catalano, O. Eiberger, W. Friedl, G. Ganesh, M. Garabini, M. Grebenstein, G. Grioli, S. Haddadin, H. Hoppner, A. Jafari, M. Laffranchi, D. Lefeber, F. Petit, S. Stramigioli, N. Tsagarakis, M.V. Damme, R.V. Ham, L.C. Visser, S. Wolf, Variable impedance actuators: a review. Robot. Autonom. Syst. 61, 1601–1614 (2013)

    Article  Google Scholar 

  108. J.M. Wakeling, A.-M. Liphardt, B.M. Nigg, Muscle activity reduces soft-tissue resonance at heel-strike during walking. J. Biomech. 36, 1761–1769 (2003)

    Article  Google Scholar 

  109. J.M. Wakeling, B.M. Nigg, Modification of soft tissue vibrations in the leg by muscular activity. J. Appl. Physiol. 90, 412–420 (2001)

    Google Scholar 

  110. Y. Wang, M. Srinivasan, Stepping in the direction of the fall: the next foot placement can be predicted from current upper body state in steady-state walking. Biol. Lett. 10 (2014)

    Google Scholar 

  111. D.M. Wolpert, R.C. Miall, M. Kawato, Internal models in the cerebellum. Trends Cogn. Sci. 2, 338–347 (1998)

    Article  Google Scholar 

  112. G.I. Zahalak, Modeling muscle mechanics (and energetics), in Multiple Muscle Systems: Biomechanics and Movement Organization, eds. by J.M. Winters, S.L.-Y. Woo (Springer, New York, 1990)

    Google Scholar 

Download references

Acknowledgements

I would especially like to acknowledge Professor Dagmar Sternad’s seminal contribution to the concepts of dynamic primitives presented herein. This work was supported in part by the Eric P. and Evelyn E. Newman Fund and by NIH Grant R01-HD087089 and NSF EAGER Grant 1548514.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Neville Hogan .

Editor information

Editors and Affiliations

Appendix: Choosing Impedance via Stochastic Optimization

Appendix: Choosing Impedance via Stochastic Optimization

Assume a manipulator and its control system are modeled as a mass \(m_{m}\) moving in 1 degree of freedom, retarded by linear damping b and driven by a linear spring referenced to a ‘zero-force’ point \(x_{0}\). It interacts with an object modeled as mass \(m_{o}\) such that both move with common motion x. State-determined equations for the coupled system are

$$ \frac{d}{{dt}}\left[ {\begin{array}{*{20}c} x \\ v \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} 0 &{} 1 \\ { - k/m} &{} { - b/m} \\ \end{array} } \right] \left[ {\begin{array}{*{20}c} x \\ v \\ \end{array} } \right] + \left[ {\begin{array}{*{20}c} 0 \\ {k/m} \\ \end{array} } \right] x_{0} + \left[ {\begin{array}{*{20}c} 0 \\ {1/m} \\ \end{array} } \right] w_{e} $$
$$ f_{o} = \left[ {- \frac{{m_{o}}}{m}k} {-\frac{{m_{o}}}{m}} b \right] \left[ {\begin{array}{*{20}c} x \\ v \\ \end{array} } \right] + \left[ {\frac{{m_{o} }}{m}k} \right] x_{0} $$

where \(m = m_{m} + m_{o}\), \(f_{o}\) is the force exerted by the manipulator on the object, and \(w_{e}\) denotes stochastic perturbation forces, modeled as zero-mean Gaussian white noise of strength S, i.e. \(E\left\{ {w_{e} (t)} \right\} = 0 , E\left\{ {w_{e} \left( t \right) w_{e} \left( {t + \tau } \right) } \right\} =S\delta \left( \tau \right) \), where \(E\left\{ \cdot \right\} \) is the expectation operator and \(\delta \left( \cdot \right) \) denotes the unit impulse function. The objective function to be minimized is

$$ Q = E\left\{ {\frac{1}{{t_{{final}} }}\mathop \int \limits _{0}^{{t_{{final}} }} \left( {\frac{{f_{o}^{2} }}{{f_{{tol}}^{2} }} + \frac{{{{\Delta }}x^{2} }}{{{{\Delta }}x_{{tol}}^{2} }}} \right) dt} \right\} $$

where \({{\Delta }}x = x_{0} - x\) and \(f_{{tol}}\) and \({{\Delta }}x_{{tol}}\) are tolerances on interface force and displacement. Due to the stochastic input, the state (\(x\left( t\right) ,v\left( t \right) \)) and output \(f_{o} \left( t \right) \) are random variables. Assume \(x_{0} \left( t \right) = {{\text {constant}}}= 0\) and find conditions for a steady-state solution (i.e. consider the limit as \(t_{{final}} \rightarrow \infty \)). The mean state and output variables propagate deterministically, i.e. \(E\left\{ {x\left( t\right) } \right\} = E\left\{ {v\left( t \right) } \right\} = E\left\{ {f_{o} \left( t \right) } \right\} = 0\). Define the input covariance \(W_{e} \left( t \right) = E\left\{ {\left( {w_{e}^{2} \left( t \right) } \right) } \right\} = S\) and the state covariance matrix

$$ {{\Sigma }}\left( t \right) = E\left\{ {\left[ {\begin{array}{*{20}c} {x\left( t \right) } \\ {v\left( t \right) } \\ \end{array} } \right] \left[ {\begin{array}{*{20}c} {x\left( t \right) } &{} {v\left( t \right) } \\ \end{array} } \right] } \right\} = E\left\{ {\left[ {\begin{array}{*{20}c} {x^{2} (t)} &{} {x\left( t \right) v\left( t \right) } \\ {x\left( t \right) v\left( t \right) } &{} {v^{2} (t)} \\ \end{array} } \right] } \right\} $$

For notational convenience, omit the explicit time dependence and use overbar notation \({{\Sigma }} = \left[ {\begin{array}{*{20}c} {\overline{{x^{2} }} } &{} {\overline{{xv}}} \\ {\overline{{xv}} } &{} {\overline{{v^{2} }} } \\ \end{array} } \right] \). Covariance propagation through a linear time-invariant system is described by the dynamic equation \({{\dot{\Sigma }}} = A{{\Sigma }} + {{\Sigma }}A^{T}+ BSB^{T}\) where A and B are system and input weighting matrices.

$$ \frac{d}{{dt}}\left[ {\begin{array}{*{20}c} {\overline{{x^{2} }} } &{} {\overline{{xv}} } \\ {\overline{{xv}} } &{} {\overline{{v^{2} }} } \\ \end{array} } \right] = \left[ {\begin{array}{*{20}c} {2\overline{{xv}} } &{} {\overline{{v^{2} }} - \overline{{x^{2} }} k/m - \overline{{xv}} b/m} \\ {\overline{{v^{2} }} - \overline{{x^{2} }} k/m - \overline{{xv}} b/m} &{} { - 2\overline{{xv}} k/m - 2\overline{{v^{2} }} b/m} \\ \end{array} } \right] + \left[ {\begin{array}{*{20}c} 0 &{} 0 \\ 0 &{} {1/m^{2} } \\ \end{array} } \right] S $$

Re-write as 3 coupled scalar differential equations

$$ \begin{array}{c} \frac{d}{{dt}}\overline{{x^{2} }} = 2\overline{{xv}}\\ \frac{d}{{dt}}\overline{{xv}} = \overline{{v^{2} }} - \overline{{x^{2} }} k/m - \overline{{xv}} b/m\\ \frac{d}{{dt}}\overline{{v^{2} }} = S/m^{2} - 2\overline{{xv}} k/m - 2\overline{{v^{2} }} b/m \end{array} $$

The scalar to be minimized is

$$ Q = \frac{1}{{t_{{final}} }}\mathop \int \limits _{0}^{{t_{{final}} }} \left( {\frac{{\overline{{f_{o}^{2} }} }}{{f_{{tol}}^{2} }} + \frac{{\overline{{{{\Delta }}x^{2} }} }}{{{{\Delta }}x_{{tol}}^{2} }}} \right) dt $$
$$f_{o}^{2} = \left( {\frac{{m_{o}^{2} }}{{m^{2} }}} \right) \left( {k^{2} x^{2} + 2kbxv + b^{2} v^{2} } \right) $$

Defining \(q = ( {f_{{tol}} /{{\Delta }}x_{{tol}} })(m / m_o)\)

$$ Q = \frac{1}{{f_{{tol}}^{2} }}\frac{{m_{o}^{2} }}{{m^{2} }}\frac{1}{{t_{{final}} }}\mathop \int \limits _{0}^{{t_{{final}} }} \left( {k^{2} \overline{{x^{2} }} + 2kb\overline{{xv}} + b^{2} \overline{{v^{2} }} + q^{2} \overline{{x^{2} }} } \right) dt $$

Construct the ‘control Hamiltonian’

$$\begin{array}{c} H = \left( {k^{2} + q^{2} } \right) \overline{{x^{2} }} + 2kb\overline{{xv}} + b^{2} \overline{{v^{2} }}\\ + \lambda _{1} 2\overline{{xv}}\\ + \lambda _{2} \left( {\overline{{v^{2} }} - \overline{{x^{2} }} k/m - \overline{{xv}} b/m} \right) \\ + \lambda _{3} \left( {S/m^{2} - 2\overline{{xv}} k/m - 2\overline{{v^{2} }} b/m} \right) \end{array}$$

where \(\lambda _{i}\) denote Lagrange multipliers. Minimize with respect to k and b.

$$\begin{aligned}&\frac{{\partial H}}{{\partial k}} = 2k\overline{{x^{2} }} + 2b\overline{{xv}} - \lambda _{2} \overline{{x^{2} }} /m - \lambda _{3} 2\overline{{xv}} /m = 0\\&\frac{{\partial H}}{{\partial b}} = 2k\overline{{xv}} + 2b\overline{{v^{2} }} - \lambda _{2} \overline{{xv}} /m - \lambda _{3} 2\overline{{v^{2} }} /m = 0\\ \end{aligned}$$

The Lagrange multipliers are defined by ‘co-state’ equations.

$$\begin{aligned}&\frac{{\partial H}}{{\partial \overline{{x^{2} }} }} = - \dot{\lambda }_{1} = k^{2} + q^{2} - \lambda _{2} k/m\\ \frac{{\partial H}}{{\partial \overline{{xv}} }}&= - \dot{\lambda }_{2} = 2kb + 2\lambda _{1} - \lambda _{2} b/m - \lambda _{3} 2k/m\\ \frac{{\partial H}}{{\partial \overline{{v^{2} }} }}&= - \dot{\lambda }_{3} = b^{2} + \lambda _{2} - \lambda _{3} 2b/m \end{aligned}$$

Assume steady state exists and set all rates of change to zero.

$$\begin{array}{c} 2\overline{{xv}} = 0\\ \overline{{v^{2} }} - \overline{{x^{2} }} k/m - \overline{{xv}} b/m = 0\\ S/m^{2} - 2\overline{{xv}} k/m - 2\overline{{v^{2} }} b/m = 0\\ k^{2} + q^{2} - \lambda _{2} k/m = 0\\ 2kb + 2\lambda _{1} - \lambda _{2} b/m - \lambda _{3} 2k/m = 0\\ b^{2} + \lambda _{2} - \lambda _{3} 2b/m = 0 \end{array}$$

A little manipulation shows that

$$\begin{aligned}&\overline{{xv}} = 0\\ \overline{{v^{2} }}&= \overline{{x^{2} }} k/m\\ \overline{{x^{2} }}&= S/2kb\\ \overline{{v^{2} }}&= S/2bm \end{aligned}$$

The first co-state equation yields

$$k^{2} + q^{2} = \lambda _{2} k/m$$
$$\lambda _{2} = km + q^{2} m/k$$

The optimal stiffness is defined by

$$2k_{{opt}} \overline{{x^{2} }} = \lambda _{2} \overline{{x^{2} }} /m$$
$$k_{{opt}} = q = \frac{{f_{{tol}} }}{{{{\Delta }}x_{{tol}} }}\frac{m}{{m_{o} }}$$

Note that this manipulation requires \(\overline{{x^{2} }} \ne 0\) and hence \(S \ne 0\). However, \(k_{{opt}}\) is independent of noise strength S.

The third co-state equation yields

$$b^{2} + \lambda _{2} = \lambda _{3} 2b/m$$
$$\lambda _{3} = \left( {b^{2} + \lambda _{2} } \right) m/2b = \frac{{bm}}{2} + \frac{{km}}{{2b}} + \frac{{q^{2} m^{2} }}{{2kb}}$$

The optimal damping is defined by

$$2b_{{opt}} \overline{{v^{2} }} = \lambda _{3} 2\overline{{v^{2} }} /m$$
$$b_{{opt}} = \sqrt{2k_{{opt}} m}$$

This manipulation requires \(\overline{{v^{2} }} \ne 0\) and hence \(S\ne 0\). However, \(b_{{opt}}\) is independent of noise strength S.

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this chapter

Cite this chapter

Hogan, N. (2017). Physical Interaction via Dynamic Primitives. In: Laumond, JP., Mansard, N., Lasserre, JB. (eds) Geometric and Numerical Foundations of Movements . Springer Tracts in Advanced Robotics, vol 117. Springer, Cham. https://doi.org/10.1007/978-3-319-51547-2_12

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51547-2_12

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51546-5

  • Online ISBN: 978-3-319-51547-2

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics