Abstract
In this paper, we propose a hybrid approach for segmenting the left ventricle out of magnetic resonance sequences and apply results of the segmentation for heart quantification. The hybrid approach uses a thresholding-based region growing algorithm coupled with gradient vector flow (GVF). Results of the segmentation steps were used for the quantification process and yielded values of 175.4 ± 51.52 (ml), 66 ± 38.97 (ml), and 61.60 ± 12.79 (%) for end diastolic volume (EDV), end systolic volume (ESV), and ejection fraction (EF), respectively.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
W. H. Orgaization. World Health Orgaization of Cardiovascular Diseases (2016). http://www.who.int/cardiovascular_diseases/en/
McManus, D.D., Shah, S.J., Fabi, M.R., Rosen, A., Whooley, M.A., Schiller, N.B.: Prognostic value of left ventricular end-systolic volume index as a predictor of heart failure hospitalization in stable coronary artery disease: data from the heart and soul study. J. Am. Soc. Echocardiogr. 22(2), 190–197 (2009)
van den Bosch, A.E., Robbers-Visser, D., Krenning, B.J., Voormolen, M.M., McGhie, J.S., Helbing, W.A., Roos-Hesselink, J.W., Simoons, M.L., Meijboom, F.J.: Real-time transthoracic three-dimensional echocardiographic assessment of left ventricular volume and ejection fraction in congenital heart disease. J. Am. Soc. Echocardiogr. 19(1), 1–6 (2006)
White, H.D., Norris, R., Brown, M.A., Brandt, P., Whitlock, R., Wild, C.: Left ventricular end-systolic volume as the major determinant of survival after recovery from myocardial infarction. Circulation 76(1), 44–51 (1987)
Hadhoud, M.M., Eladawy, M.I., Farag, A., Montevecchi, F.M., Morbiducci, U.: Left ventricle segmentation in cardiac MRI images. Am. J. Biomed. Eng. 2(3), 131–135 (2012)
Bhan, A.: Parametric models for segmentation of Cardiac MRI database with geometrical interpretation. In: 2014 International Conference on Signal Processing and Integrated Networks (SPIN), pp. 711–715 (2014)
Caudron, J., Fares, J., Lefebvre, V., Vivier, P.-H., Petitjean, C., Dacher, J.-N.: Cardiac MRI assessment of right ventricular function in acquired heart disease: factors of variability. Acad. Radiol. 19(8), 991–1002 (2012)
Petitjean, C., Dacher, J.-N.: A review of segmentation methods in short axis cardiac MR images. Med. Image Anal. 15(2), 169–184 (2011)
Van der Geest, R., Jansen, E., Buller, V., Reiber, J.: Automated detection of left ventricular epi-and endocardial contours in short-axis MR images. Comput. Cardiol. 1994, 33–36 (1994)
O’Donnell, T., Funka-Lea, G., Tek, H., Jolly, M.-P., Rasch, M., Setser, R.: Comprehensive cardiovascular image analysis using MR and CT at siemens corporate research. Int. J. Comput. Vis. 70(2), 165–178 (2006)
Frangi, A.F., Niessen, W.J., Viergever, M.A.: Three-dimensional modeling for functional analysis of cardiac images, a review. IEEE Trans. Med. Imaging 20(1), 2–5 (2001)
Frangi, A.F., Rueckert, D., Schnabel, J.A., Niessen, W.J.: Automatic construction of multiple-object three-dimensional statistical shape models: application to cardiac modeling. IEEE Trans. Med. Imaging 21(9), 1151–1166 (2002)
Pham, D.L., Xu, C., Prince, J.L.: Current methods in medical image segmentation 1. Ann. Rev. Biomed. Eng. 2(1), 315–337 (2000)
Kaggle: Second Annual Data Science Bowl. https://www.kaggle.com/c/second-annual-data-science-bowl
Bhan, A., Goyal, A., Ray, V.: Fast fully automatic multiframe segmentation of left ventricle in cardiac MRI images using local adaptive k-means clustering and connected component labeling. In: 2015 2nd International Conference on Signal Processing and Integrated Networks (SPIN), pp. 114–119 (2015)
Bhan, A., Goyal, A., Dutta, M.K., Riha, K., Omran, Y.: Image-based pixel clustering and connected component labeling in left ventricle segmentation of cardiac MR images. In: 2015 7th International Congress on Ultra Modern Telecommunications and Control Systems and Workshops (ICUMT), pp. 339–342 (2015)
Gupta, P., Malik, V., Gandhi, M.: Implementation of multilevel threshold method for digital images used in medical image processing. Int. J. Adv. Res. Comput. Sci. Softw. Eng. 2(2) (2012)
Tian, M., Yang, Q., Maier, A., Schasiepen, I., Maass, N., Elter, M.: Automatic histogram-based initialization of k-means clustering in CT. In: Meinzer, H.-P., Deserno, T.M., Handels, H., Tolxdorff, T. (eds.) Bildverarbeitung für die Medizin 2013, pp. 277–282. Springer, Heidelberg (2013)
Ecabert, O., Peters, J., Schramm, H., Lorenz, C., von Berg, J., Walker, M.J., Vembar, M., Olszewski, M.E., Subramanyan, K., Lavi, G.: Automatic model-based segmentation of the heart in CT images. IEEE Trans. Med. Imaging 27(9), 1189–1201 (2008)
Danilouchkine, M., Behloul, F., Lamb, H., Reiber, J.J., Lelieveldt, B.: Cardiac LV segmentation using a 3D active shape model driven by fuzzy inference: application to cardiac CT and MR. IEEE Trans. Inf. Technol. Biomed. 12(5) (2003)
Wang, L., Pei, M., Codella, N.C., Kochar, M., Weinsaft, J.W., Li, J., Prince, M.R., Wang, Y.: Left ventricle: fully automated segmentation based on spatiotemporal continuity and myocardium information in cine cardiac magnetic resonance imaging (LV-FAST). BioMed Res. Int. 2015 (2015)
Li, C., Jia, X., Sun, Y.: Improved semi-automated segmentation of cardiac CT and MR images. In: 2009 IEEE International Symposium on Biomedical Imaging: From Nano to Macro, pp. 25–28 (2009)
Ray, V., Goyal, A.: Image based sub-second fast fully automatic complete cardiac cycle left ventricle segmentation in multi frame cardiac MRI images using pixel clustering and labelling. In: 2015 Eighth International Conference on Contemporary Computing (IC3), pp. 248–252 (2015)
Urschler, M., Mayer, H., Bolter, R., Leberl, F.: The live wire approach for the segmentation of left ventricle electron-beam CT images. In: 26th Workshop of the Austrian Association for Pattern Recognition [AAPR/OEAGM], Graz, Austria (2002)
Zheng, Y., Barbu, A., Georgescu, B., Scheuering, M., Comaniciu, D.: Four-chamber heart modeling and automatic segmentation for 3-D cardiac CT volumes using marginal space learning and steerable features. IEEE Trans. Med. Imaging 27(11), 1668–1681 (2008)
van Rikxoort, E.M., Isgum, I., Arzhaeva, Y., Staring, M., Klein, S., Viergever, M.A., Pluim, J.P., van Ginneken, B.: Adaptive local multi-atlas segmentation: application to the heart and the caudate nucleus. Med. Image Anal. 14(1), 39–49 (2010)
Zhuang, X., Rhode, K.S., Razavi, R.S., Hawkes, D.J., Ourselin, S.: A registration-based propagation framework for automatic whole heart segmentation of cardiac MRI. IEEE Trans. Med. Imaging 29(9), 1612–1625 (2010)
Codella, N.C., Weinsaft, J.W., Cham, M.D., Janik, M., Prince, M.R., Wang, Y.: Left ventricle: automated segmentation by using myocardial effusion threshold reduction and intravoxel computation at MR imaging 1. Radiology 248(3), 1004–1012 (2008)
Xu, C., Prince, J.L.: Gradient vector flow: a new external force for snakes, pp. 66–71 (1997)
Acknowledgments
This work was supported by the Korea Institute of Energy Technology Evaluation and Planning (KETEP) and the Ministry of Trade, Industry & Energy (MOTIE) of the Republic of Korea (No. 20162220100050); in part by The Leading Human Resource Training Program of Regional Neo Industry through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT, and Future Planning (NRF-2016H1D5A1910564); and in part by the Business for Cooperative R&D between Industry, Academy, and Research Institute funding for the Korea Small and Medium Business Administration in 2016 (Grant No. C0395147, S2381631).
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Sohaib, M., Kim, JM. (2017). Quantitative Assessment of Heart Function: A Hybrid Mechanism for Left Ventricle Segmentation from Cine MRI Sequences. In: Wagner, M., Li, X., Hendtlass, T. (eds) Artificial Life and Computational Intelligence. ACALCI 2017. Lecture Notes in Computer Science(), vol 10142. Springer, Cham. https://doi.org/10.1007/978-3-319-51691-2_15
Download citation
DOI: https://doi.org/10.1007/978-3-319-51691-2_15
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-51690-5
Online ISBN: 978-3-319-51691-2
eBook Packages: Computer ScienceComputer Science (R0)