Skip to main content

A Memetic Cooperative Co-evolution Model for Large Scale Continuous Optimization

  • Conference paper
  • First Online:
Artificial Life and Computational Intelligence (ACALCI 2017)

Part of the book series: Lecture Notes in Computer Science ((LNAI,volume 10142))

Abstract

Cooperative co-evolution (CC) is a framework that can be used to ‘scale up’ EAs to solve high dimensional optimization problems. This approach employs a divide and conquer strategy, which decomposes a high dimensional problem into sub-components that are optimized separately. However, the traditional CC framework typically employs only one EA to solve all the sub-components, which may be ineffective. In this paper, we propose a new memetic cooperative co-evolution (MCC) framework which divides a high dimensional problem into several separable and non-separable sub-components based on the underlying structure of variable interactions. Then, different local search methods are employed to enhance the search of an EA to solve the separable and non-separable sub-components. The proposed MCC model was evaluated on two benchmark sets with 35 benchmark problems. The experimental results confirmed the effectiveness of our proposed model, when compared against two traditional CC algorithms and a state-of-the-art memetic algorithm.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Omidvar, M.N., Li, X., Tang, K.: Designing benchmark problems for large-scale continuous optimization. Inf. Sci. 316, 419–436 (2015)

    Article  Google Scholar 

  2. Weise, T., Chiong, R., Tang, K.: Evolutionary optimization: pitfalls and booby traps. J. Comput. Sci. Technol. 27(5), 907–936 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Dong, W., Chen, T., Tino, P., Yao, X.: Scaling up estimation of distribution algorithms for continuous optimization. IEEE Trans. Evol. Comput. 17(6), 797–822 (2013)

    Article  Google Scholar 

  4. Potter, M.A., Jong, K.A.: A cooperative coevolutionary approach to function optimization. In: Davidor, Y., Schwefel, H.-P., Männer, R. (eds.) PPSN 1994. LNCS, vol. 866, pp. 249–257. Springer, Heidelberg (1994). doi:10.1007/3-540-58484-6_269

    Chapter  Google Scholar 

  5. Omidvar, M.N., Li, X., Mei, Y., Yao, X.: Cooperative co-evolution with differential grouping for large scale optimization. IEEE Trans. Evol. Comput. 18(3), 378–393 (2014)

    Article  Google Scholar 

  6. Mei, Y., Li, X., Yao, X.: Cooperative coevolution with route distance grouping for large-scale capacitated arc routing problems. IEEE Trans. Evol. Comput. 18(3), 435–449 (2014)

    Article  Google Scholar 

  7. Tan, K.C., Yang, Y., Goh, C.K.: A distributed cooperative coevolutionary algorithm for multiobjective optimization. IEEE Trans. Evol. Comput. 10(5), 527–549 (2006)

    Article  Google Scholar 

  8. Tseng, L., Chen, C.: Multiple trajectory search for large scale global optimization. In: IEEE Congress on Evolutionary Computation, CEC 2008, IEEE World Congress on Computational Intelligence, pp. 3052–3059. IEEE (2008)

    Google Scholar 

  9. Rosenbrock, H.: An automatic method for finding the greatest or least value of a function. Comput. J. 3(3), 175–184 (1960)

    Article  MathSciNet  Google Scholar 

  10. Tang, K., Yao, X., Suganthan, P.: Benchmark functions for the CEC 2010 special session and competition on large scale global optimization. Technique report, USTC, Natrue Inspired Computation and Applications Laboratory, no. 1, pp. 1–23 (2010)

    Google Scholar 

  11. Li, X., Tang, K., Omidvar, M.N., Yang, Z., Qin, K.: Benchmark functions for the CEC 2013 special session and competition on large-scale global optimization. Gene 7(33), 8 (2013)

    Google Scholar 

  12. Van den Bergh, F., Engelbrecht, A.P.: A cooperative approach to particle swarm optimization. IEEE Trans. Evol. Comput. 8(3), 225–239 (2004)

    Article  Google Scholar 

  13. Yang, Z., Tang, K., Yao, X.: Large scale evolutionary optimization using cooperative coevolution. Inf. Sci. 178(15), 2985–2999 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  14. Omidvar, M.N., Li, X., Yao, X.: Cooperative co-evolution with delta grouping for large scale non-separable function optimization. In: 2010 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2010)

    Google Scholar 

  15. Mahdavi, S., Rahnamayan, S., Shiri, M.E.: Multilevel framework for large-scale global optimization. Soft Comput. 1–30 (2016)

    Google Scholar 

  16. Sun, Y., Kirley, M., Halgamuge, S.K.: Extended differential grouping for large scale global optimization with direct and indirect variable interactions. In: Proceedings of the 2015 on Genetic and Evolutionary Computation Conference, pp. 313–320. ACM (2015)

    Google Scholar 

  17. Mei, Y., Omidvar, M.N., Li, X., Yao, X.: A competitive divide-and-conquer algorithm for unconstrained large-scale black-box optimization. ACM Trans. Math. Softw. (TOMS) 42(2), 13 (2016)

    Article  MathSciNet  Google Scholar 

  18. Chen, W., Weise, T., Yang, Z., Tang, K.: Large-scale global optimization using cooperative coevolution with variable interaction learning. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN 2010. LNCS, vol. 6239, pp. 300–309. Springer, Berlin (2010). doi:10.1007/978-3-642-15871-1_31

    Google Scholar 

  19. Sun, L., Yoshida, S., Cheng, X., Liang, Y.: A cooperative particle swarm optimizer with statistical variable interdependence learning. Inf. Sci. 186(1), 20–39 (2012)

    Article  MathSciNet  Google Scholar 

  20. Ge, H., Sun, L., Yang, X., Yoshida, S., Liang, Y.: Cooperative differential evolution with fast variable interdependence learning and cross-cluster mutation. Appl. Soft Comput. 36, 300–314 (2015)

    Article  Google Scholar 

  21. Tang, R., Wu, Z., Fang, Y.: Adaptive multi-context cooperatively coevolving particle swarm optimization for large-scale problems. Soft Comput. 1–20 (2016)

    Google Scholar 

  22. Sun, Y., Kirley, M., Halgamuge, S.K.: Quantifying variable interactions in continuous optimization problems. IEEE Trans. Evol. Comput. (in press)

    Google Scholar 

  23. Yang, Z., Tang, K., Yao, X.: Self-adaptive differential evolution with neighborhood search. In: IEEE Congress on Evolutionary Computation, CEC 2008, IEEE World Congress on Computational Intelligence, pp. 1110–1116. IEEE (2008)

    Google Scholar 

  24. Molina, D., Lozano, M., Herrera, F.: MA-SW-chains: memetic algorithm based on local search chains for large scale continuous global optimization. In: 2010 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2010)

    Google Scholar 

  25. Sheskin, D.J.: Handbook of Parametric and Nonparametric Statistical Procedures. CRC Press, Boca Raton (2003)

    Book  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuan Sun .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer International Publishing AG

About this paper

Cite this paper

Sun, Y., Kirley, M., Halgamuge, S.K. (2017). A Memetic Cooperative Co-evolution Model for Large Scale Continuous Optimization. In: Wagner, M., Li, X., Hendtlass, T. (eds) Artificial Life and Computational Intelligence. ACALCI 2017. Lecture Notes in Computer Science(), vol 10142. Springer, Cham. https://doi.org/10.1007/978-3-319-51691-2_25

Download citation

  • DOI: https://doi.org/10.1007/978-3-319-51691-2_25

  • Published:

  • Publisher Name: Springer, Cham

  • Print ISBN: 978-3-319-51690-5

  • Online ISBN: 978-3-319-51691-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics