Abstract
Cooperative co-evolution (CC) is a framework that can be used to ‘scale up’ EAs to solve high dimensional optimization problems. This approach employs a divide and conquer strategy, which decomposes a high dimensional problem into sub-components that are optimized separately. However, the traditional CC framework typically employs only one EA to solve all the sub-components, which may be ineffective. In this paper, we propose a new memetic cooperative co-evolution (MCC) framework which divides a high dimensional problem into several separable and non-separable sub-components based on the underlying structure of variable interactions. Then, different local search methods are employed to enhance the search of an EA to solve the separable and non-separable sub-components. The proposed MCC model was evaluated on two benchmark sets with 35 benchmark problems. The experimental results confirmed the effectiveness of our proposed model, when compared against two traditional CC algorithms and a state-of-the-art memetic algorithm.
Access this chapter
Tax calculation will be finalised at checkout
Purchases are for personal use only
Similar content being viewed by others
References
Omidvar, M.N., Li, X., Tang, K.: Designing benchmark problems for large-scale continuous optimization. Inf. Sci. 316, 419–436 (2015)
Weise, T., Chiong, R., Tang, K.: Evolutionary optimization: pitfalls and booby traps. J. Comput. Sci. Technol. 27(5), 907–936 (2012)
Dong, W., Chen, T., Tino, P., Yao, X.: Scaling up estimation of distribution algorithms for continuous optimization. IEEE Trans. Evol. Comput. 17(6), 797–822 (2013)
Potter, M.A., Jong, K.A.: A cooperative coevolutionary approach to function optimization. In: Davidor, Y., Schwefel, H.-P., Männer, R. (eds.) PPSN 1994. LNCS, vol. 866, pp. 249–257. Springer, Heidelberg (1994). doi:10.1007/3-540-58484-6_269
Omidvar, M.N., Li, X., Mei, Y., Yao, X.: Cooperative co-evolution with differential grouping for large scale optimization. IEEE Trans. Evol. Comput. 18(3), 378–393 (2014)
Mei, Y., Li, X., Yao, X.: Cooperative coevolution with route distance grouping for large-scale capacitated arc routing problems. IEEE Trans. Evol. Comput. 18(3), 435–449 (2014)
Tan, K.C., Yang, Y., Goh, C.K.: A distributed cooperative coevolutionary algorithm for multiobjective optimization. IEEE Trans. Evol. Comput. 10(5), 527–549 (2006)
Tseng, L., Chen, C.: Multiple trajectory search for large scale global optimization. In: IEEE Congress on Evolutionary Computation, CEC 2008, IEEE World Congress on Computational Intelligence, pp. 3052–3059. IEEE (2008)
Rosenbrock, H.: An automatic method for finding the greatest or least value of a function. Comput. J. 3(3), 175–184 (1960)
Tang, K., Yao, X., Suganthan, P.: Benchmark functions for the CEC 2010 special session and competition on large scale global optimization. Technique report, USTC, Natrue Inspired Computation and Applications Laboratory, no. 1, pp. 1–23 (2010)
Li, X., Tang, K., Omidvar, M.N., Yang, Z., Qin, K.: Benchmark functions for the CEC 2013 special session and competition on large-scale global optimization. Gene 7(33), 8 (2013)
Van den Bergh, F., Engelbrecht, A.P.: A cooperative approach to particle swarm optimization. IEEE Trans. Evol. Comput. 8(3), 225–239 (2004)
Yang, Z., Tang, K., Yao, X.: Large scale evolutionary optimization using cooperative coevolution. Inf. Sci. 178(15), 2985–2999 (2008)
Omidvar, M.N., Li, X., Yao, X.: Cooperative co-evolution with delta grouping for large scale non-separable function optimization. In: 2010 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2010)
Mahdavi, S., Rahnamayan, S., Shiri, M.E.: Multilevel framework for large-scale global optimization. Soft Comput. 1–30 (2016)
Sun, Y., Kirley, M., Halgamuge, S.K.: Extended differential grouping for large scale global optimization with direct and indirect variable interactions. In: Proceedings of the 2015 on Genetic and Evolutionary Computation Conference, pp. 313–320. ACM (2015)
Mei, Y., Omidvar, M.N., Li, X., Yao, X.: A competitive divide-and-conquer algorithm for unconstrained large-scale black-box optimization. ACM Trans. Math. Softw. (TOMS) 42(2), 13 (2016)
Chen, W., Weise, T., Yang, Z., Tang, K.: Large-scale global optimization using cooperative coevolution with variable interaction learning. In: Schaefer, R., Cotta, C., Kołodziej, J., Rudolph, G. (eds.) PPSN 2010. LNCS, vol. 6239, pp. 300–309. Springer, Berlin (2010). doi:10.1007/978-3-642-15871-1_31
Sun, L., Yoshida, S., Cheng, X., Liang, Y.: A cooperative particle swarm optimizer with statistical variable interdependence learning. Inf. Sci. 186(1), 20–39 (2012)
Ge, H., Sun, L., Yang, X., Yoshida, S., Liang, Y.: Cooperative differential evolution with fast variable interdependence learning and cross-cluster mutation. Appl. Soft Comput. 36, 300–314 (2015)
Tang, R., Wu, Z., Fang, Y.: Adaptive multi-context cooperatively coevolving particle swarm optimization for large-scale problems. Soft Comput. 1–20 (2016)
Sun, Y., Kirley, M., Halgamuge, S.K.: Quantifying variable interactions in continuous optimization problems. IEEE Trans. Evol. Comput. (in press)
Yang, Z., Tang, K., Yao, X.: Self-adaptive differential evolution with neighborhood search. In: IEEE Congress on Evolutionary Computation, CEC 2008, IEEE World Congress on Computational Intelligence, pp. 1110–1116. IEEE (2008)
Molina, D., Lozano, M., Herrera, F.: MA-SW-chains: memetic algorithm based on local search chains for large scale continuous global optimization. In: 2010 IEEE Congress on Evolutionary Computation (CEC), pp. 1–8. IEEE (2010)
Sheskin, D.J.: Handbook of Parametric and Nonparametric Statistical Procedures. CRC Press, Boca Raton (2003)
Author information
Authors and Affiliations
Corresponding author
Editor information
Editors and Affiliations
Rights and permissions
Copyright information
© 2017 Springer International Publishing AG
About this paper
Cite this paper
Sun, Y., Kirley, M., Halgamuge, S.K. (2017). A Memetic Cooperative Co-evolution Model for Large Scale Continuous Optimization. In: Wagner, M., Li, X., Hendtlass, T. (eds) Artificial Life and Computational Intelligence. ACALCI 2017. Lecture Notes in Computer Science(), vol 10142. Springer, Cham. https://doi.org/10.1007/978-3-319-51691-2_25
Download citation
DOI: https://doi.org/10.1007/978-3-319-51691-2_25
Published:
Publisher Name: Springer, Cham
Print ISBN: 978-3-319-51690-5
Online ISBN: 978-3-319-51691-2
eBook Packages: Computer ScienceComputer Science (R0)